
3D Point Cloud Geometry Compression on Deep Learning
Tianxin Huang1,2, Yong Liu1,2*

1 The state key laboratory of industrial control technology, Zhejiang University 2 NetEase Fuxi AI Lab

21725129@zju.edu.cn yongliu@iipc.zju.edu.cn

ABSTRACT
3D point cloud presentation has been widely used in computer
vision, automatic driving, augmented reality, smart cities and
virtual reality. 3D point cloud compression method with higher
compression ratio and tiny loss is the key to improve data
transportation efficiency. In this paper, we propose a new 3D
point cloud geometry compression method based on deep
learning, also an auto-encoder performing better than other
networks in detail reconstruction. It can reach much higher
compression ratio than the state-of-art while keeping tolerable
loss. It also supports parallel compressing multiple models by
GPU, which can improve processing efficiency greatly. The
compression process is composed of two parts. Firstly, Raw data
is compressed into codeword by extracting feature of raw model
with encoder. Then, the codeword is further compressed with
sparse coding. Decompression process is implemented in reverse
order. Codeword is recovered and fed into decoder to reconstruct
point cloud. Detail reconstruction ability is improved by a
hierarchical structure in our decoder. Latter outputs are grown
from former fuzzier outputs. In this way, details are added to
former output by latter layers step by step to make a more
precise prediction. We compare our method with PCL
compression and Draco compression on ShapeNet40 part
dataset. Our method may be the first deep learning-based point
cloud compression algorithm. The experiments demonstrate it is
superior to former common compression algorithms with large
compression ratio, which can also reserve original shapes with
tiny loss.

CCS CONCEPTS
• Computing methodologies ~ 3D imaging; Reconstruction;
• Computing methodologies ~ Image compression;

KEYWORDS

3D point cloud; geometry compression; auto-encoder;
hierarchical structure; detail reconstruction

ACM Reference format:

Tianxin Huang and Yong Liu. 2019. 3D Point Cloud Geometry
Compression on Deep Learning. In Proceedings of the 27th ACM
International Conference on Multimedia, Nice, France, Oct. 21-25, 2019 (MM
'19), ACM, NY, USA. 8 pages. https://doi.org/10.1145/3343031.3351061

1 INTRODUCTION

3D point cloud data is playing a more and more important
role in many real-life fields, such as automatic navigation and
immersive communication. It puts higher and higher
requirement on efficiency of data transmission and memory of
data storage. Under the circumstance, better lossless point cloud
data compression methods with higher compression ratio are
necessary. Deep learning is a new idea for data compression of
3D point cloud, supposed to reach higher compression ratio than
existing methods and keep tiny loss of data. With appropriate
structure, the network can find out one reasonable solution for
the problem of point cloud compression. However, existing deep
learning methods for point cloud reconstruction do poorly in
detail reconstruction. On this occasion, we propose an auto-
encoder network having good performance on detail
representation of 3D model, better than the state of art. By
adding constraints to size of codeword extracted by the encoder,
our network can reach higher compression ratio than almost any
existing 3D point cloud compression method. Besides,
compression by deep learning is based on matrix operations,
which means our compression and decompression processes can
use GPU to achieve parallel processing, dealing with multiple
models at a time, which can greatly improve efficiency.

Our network architecture is shown in Figure 1. In this work,
we use similar hierarchical structure proposed in PointNet++ as
our encoder to capture local structure of the model. As for the
decoder, we use a reverse hierarchical neutral network to
generate models of different resolutions gradually. High-
resolution model will grow up from former low-resolution model.
The progressive generation method is good at detail
reconstruction because network between two output layers only
needs to add details to the basic framework. Data compression
process for point cloud data based on deep learning can be
divided into two parts. Firstly, a model is encoded by the
network encoder to a codeword; Then the codeword is further
encoded by sparse coding. Receiver will decode the codeword
containing information of raw model in reverse order. It will be
then fed to the decoder to reconstruct point cloud.

∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
MM '19, October 21–25, 2019, Nice, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6889-6/19/10…$15.00
https://doi.org/10.1145/3343031.3351061

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

890

Fully connected
layers

Max
pooling

Decompression
layer

Decompression
layer

Decompression
layer

Sparse
coding

Decoding

Codeword

Compressed
word

Deconvolution
layers

Fully connected
layers

Fully connected
layers

Codeword

Local feature
matrix

Local feature
matrix

Local feature
matrix

Local feature
matrix

10001011000
+

1.2063614, 0.08900673,

0.11077991, 0.4861589

1.2063614,0,0,0,0.08900673,0,0.

11077991,0.4861589,0,0,0

1.2063614,0,0,0,0.08900673,0,0.

11077991,0.4861589,0,0,0

Figure 1 The architecture of our network. The whole process is consisting of network part and sparse coding part. The
network part achieves data compression and decompression by a pair of encoder and decoder. Codeword from encoder is
sparse due to sparse constraint in loss function. Sparse coding is used to improve compression ratio by further compressing
sparse codeword from network encoder. Compressed codeword is transferred from sender to receiver. Encoder and decoder
will be saved separately by sender and receiver to finish the whole process.

Figure 2 Structure of Decompression layer. Our decompression layer generates local feature spaces consist of M feature
vectors by deconvolution. Then the local feature spaces are divided to 4 subspaces by deconvolution in another dimension.
Subspaces are finally combined into single feature vectors again by convolution. In this case, raw feature vectors are
expanded to 4 times more, then transformed into higher resolution model. Meanwhile, local feature vectors from subspaces
are directly propagated to next decompression layer and merged with global feature to make up local feature matrix in
next decompression layer.

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

891

 Last layer of the encoder is named as bottleneck layer.
Dimension of bottleneck layer and bits occupied by each floating
number in the codeword are two key factors of compression
result. There are three kinds of data type for floating number:
semi-precision floating number taking up 16 bits, single-
precision floating number taking up 32 bits, and double-
precision floating number taking up 64 bits. In our work, we test
the influence of dimension of bottleneck layer on the recovery
effect in 16 bits and 32 bits data type precision of codewords. We
also give a best compression ratio for 3D point clouds by short
codeword and low data type precision of codewords in sec 4.

Our contribution can be summarized as:

We propose a new deep auto-encoder processing unorder
point clouds data with lower reconstruction loss and stronger
detail reconstruction ability than former unsupervised neutral
networks;

We design a new deep learning-based method for sparse
point clouds geometry compression. It can reach higher
compression ratio than any existing compression methods with
acceptable loss. It also provides three outputs in different
resolutions, suitable for different occasions.

2 RELATED WORKS

2.1 Representation Learning for Point Cloud

Most neutral networks dealing with point cloud are based on
the voxel model such as [1],[2] and [3], partitioning raw model
into 3d regular voxels like pixel in 2d. However, point cloud data
is often sparse in Euclidean space. It leads to great waste of time
and memory to convert raw data detected in coordinates format
to voxels. Besides, resolution of models is greatly restricted by
memory, since models with higher resolution ask for much
smaller voxels. OctNet proposed by Gernot et al. [4] tries to
reduce computational and memory requirements by converting
voxel models to unbalanced octrees with different size of leaf
nodes. In this way, high-resolution model can be represented as
the combination of voxels of different sizes, reducing memory
waste and improve computation efficiency. But it still wastes a
lot to convert raw data in xyz format to voxels. Kd-Network [5]
deals with point cloud based on Kd-trees to reduce space
complexity. Some works also describes 3d point cloud models as
multi-view images, such as [6] and [7]. However, conversion to
collections of images may destroy spatial feature of 3d model.

PointNet [8] and PointNet++ [9] have started the fashion to
process point clouds in xyz format directly. They concentrate on
point clouds classification and scene segmentation. FoldingNet
by Yao et al. [10] may be first one learning representation of
model from unorder raw point clouds directly. They modified a
new operation named folding to complete point clouds
reconstruction from codewords extracted by similar 1-D
convolution with PointNet. The folding operation means to
combine feature with 2-D grid samples and fold the 2-D grid to
3D models. This operation can save a lot of memory. Their

folding operation has been used as an efficient method in point
clouds reconstruction to expand dimension such as in [11].
However, some subtle shape may be omitted in generation

because they are too difficult to be transformed from 2-D grid，

such as the porous structure. Panos et al. [12] build an auto-
encoder on convolution layers and fully connected layers to
learn representation of unorder point clouds. They train a few
different GANs [13] based on the auto-encoder as generative
networks and compare their generation ability. Their network
gives a good generation result on unseen shapes, while still weak
in details reconstruction. Jiaxin Li et al. [14] propose a new
feature extraction method by sampling and grouping model with
self-organized maps (SOM), instead of directly sampling by
farthest point sampling in PointNet ++. It improves classification
accuracy greatly.

2.2 Point Cloud Geometry Compression

Point cloud compression has always been an important
research orientation in computer graphics since the increasing
capability of 3D data scanning devices. Point cloud compression
includes three main types [15]: geometry compression, attribute
compression and dynamic motion-compensated compression.
We concentrate on geometry compression in this paper. Some
compression algorithms compress point clouds by saving data in
a memory efficient data structure such as [16], [17] and [18].
Some encode point cloud by building a mathematic model to
describe point cloud structure like [19]. Tim.et al [20] propose a
compression method by transforming 3d point cloud to 2D maps,
compressing them with image compression algorithms such as
JPEG. Two common point cloud compression methods are PCL
[21] and Draco [22]. PCL compresses point cloud by converting
raw data to voxels and encoding the voxels with an octree. Its
compression ratio can be adjusted by changing the voxel
precision. Draco provides 10 alternative compression levels. It
also supports further lossy compression by reducing
quantization bits.

3 HIERARCHICAL AUTO-ENCODER

3.1 Multiple Scale Feature Extraction

PointNet and PointNet++ are the pioneers of directly using
raw point cloud data only composed of coordinates. PointNet
uses 1-D convolutional layers with kernel size 1 to extract point
feature, and max pooling layer to produce a joint representation,
invariant to permutation of point sets. However, PointNet
doesn’t offer much attention to preserve local structure of raw
data. On this occasion, PointNet++ applies PointNet recursively
in each local region to acquire feature of local structures. We use
modified multiscale hierarchical encoder in our work. Local
region centers are obtained by farthest point sampling (FPS),
which means to choose point farthest from all former sampled
points in rest point set iteratively. And local regions are acquired
by calculating k nearest neighbors in r radius bounding sphere. If
the number of points in this bounding sphere is less than k, then

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

892

the region center will be replicated to keep k neighbors in the
bounding sphere. Features of local regions are also extracted by
1-D convolutional layers and max pooling layers. Centers of
local regions are used to confirm new centers for next local
feature extraction.

Coordinates of these centers are combined with local features
to make up new features fed to next local feature extraction
layer. Finally, all local features will be combined by a global max
pooling layer to produce a synthesize feature. However,
hierarchical encoder in PointNet ++ ignores to reserve basic
shape feature. The lowest resolution model sampled describes
contour of raw model. Its concatenation with feature matrix may
affect the reservation of shape feature. So, we use an additional
structure to extract feature of the lowest-resolution model.
Feature extracted from the lowest-resolution model is
concatenated together with synthesize feature from former
hierarchical extraction. In this way, feature of basic contour is
strengthened in the final codeword, meaningful to improve
reconstruction quality.

3.2 Hierarchical Reconstruction

As for the reconstruction of point cloud from the compressed
data, we use a hierarchical structure to improve the ability to
reconstruct details. The structure consists of three output layers
in different resolutions. The output of first output layer gives a
basic frame of the whole point cloud, and latter layers add more
details to the frame gradually. The output of latter layer relies on
former output. In this way, we can get a multi-resolution
representation of raw point cloud data.

The core of more accurate generation is the decompression
layer, shown in Figure 2. Local feature decompressed in the last
part, together with codeword containing global feature, and the
output coordinates are concatenated together and fed to the
decompression layer to acquire new local feature matrix. The
decompression layer is achieved by local deconvolution and local
extension architectures shown in Figure 2.

The decompression process is similar to an upsampling
process in [23]. They all generate more precise model from a
fuzzier one. However, size of first two models in out structure
are too small to contain enough structure information, almost
impossible to reconstruct more precise model by directly
upsampling former model. So, our decompression layer
combines local feature matrix and fuzzier model together to
make accurate reconstruction.

3.3 Loss Function

Loss function is important for the training process. The key is
how to evaluate the difference between two similar point cloud
models. There are a few kinds of methods to evaluate the
difference. The comparison of training results of them is in sec.4.

3.1.1 Chamfer Distance.

The Chamfer Distance (CD) is a commonly used metric to
calculate the loss for point sets. It measures the mean distance of
one point to its nearest neighbor between two point sets.

() 1

1
2

2
2

1

1 2

2
2

1
min

,
1

m

,

in







 
− 

  
=  

 −
 
  




C

y S

D

x S

x S
x S

x y
S

S S max

x y
S

loss

3.1.2 Earth Mover’s Distance.

Similar to the Chamfer Distance, the Earth Mover’s Distance
(EMD) [24] is also a commonly used loss function. It is supposed
to perform better than CD, also far more complicated. EMD tries
to find a bijection between two point sets and calculate the mean
distance between corresponding points:

() ()
1 2

1

1 2 2:
, min

 →


= −EMD
S S

x S

loss S S x x

 is the bijection from point set 1S to 2S . The

calculation of EMD needs to solve an optimization problem to
acquire the bijection, which is a great waste of time and memory.

3.1.3 Root Mean Square Error.

Root Mean Square Error (RMS) is not often used as loss
function. However, another metric related to RMS, Peak Signal
to Noise Ratio (PSNR), is widely used in point cloud compression
to evaluate the quality of decompression.

The RMS is defined as square root of mean squared distance
of one point to its nearest neighbor between two point sets:

()
2

1

1
2

2

2
1

1 2
2

2
2

1
min

,
1

m

,

in







 
− 

  
=  

 −
 
  





y S
x S

x S
y S

x y
S

RMS S S max

x y
S

3.1.4 Multiscale Loss.

Former metrics to evaluate the model difference is lack of
constraint of local details. Taking consideration of local
difference can accelerate convergence of network and improve
detail reconstruction ability. We combine local Loss evaluation
from multiple scales of the sampled points’ neighbors with the
basic Loss evaluation method to make up the Multiscale loss
function. It is defined as:

() ()

()

1 2 1 2

, ,
1 2

1

, ,

1
 ,





=

= 

+  

multiscale

N
i r i r

r

r i

Loss S S Loss S S

Loss S S
N

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

893

Table 1 Illustration of training process

input 1 epoch 20 epochs 40 epochs 60 epochs 80 epochs 100 epochs

Table 2 Interpolation between point clouds in latent space

Source Interpolation between different point clouds in same class Target

 Interpolation between point clouds in different classes

 is the coefficient of frame loss, and means the

coefficient of loss of local region with radius of r. and

mean local point sets located by the ith sampled central point

with radius of r from raw point sets and .

3.1.5 Sparse Constraint.

To reach higher compression ratio, we need to restrain the
size of compressed codeword. Raw codeword is further
compressed by sparse coding. Sparse coding means to record
positions of nonzero in codeword by encoding these positions
into binary format.

In this way, a codeword of size 256 only need 8 32
dimensional floats to record its nonzero distribution, followed by
n nonzero values to contain all information.

So, decreasing the number of nonzero values in codeword can
improve compression ratio. With that in mind, L1 regularization
is used to reduce the number of nonzero values in codeword. It is
defined as:

() ()= 
i

CodeLimit V V i

V is the codeword, and ε is the coefficient of the
regularization.

3.1.6 Sparse Multiscale Loss.

Finally, to improve compression ratio as high as possible
while keeping good reconstruction quality, we combine
Multiscale loss and sparse constraint to compose the Sparse
Multiscale loss. It is defined as:

 r
,

1
i rS ,

2
i rS

1S 2S

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

894

Table 3 Compression experimental result

32 bits
Source Bottleneck

size
8 16 32 64 128 256

bpp 0.1170 0.1408 0.1734 0.2258 0.2989 0.3936

loss 0.0663 0.0643 0.0630 0.0634 0.0628 0.0628

shape

16 bits

Bottleneck
size

8 16 32 64 128 256

bpp 0.0380 0.0530 0.1026 0.1261 0.1897 0.2551
loss 0.0732 0.0670 0.0629 0.0629 0.0634 0.0620

shape

() ()

() ()

 1 2 1 2

, ,
1 2

1

, ,

1
 ,

sparsemultiscale

N
i r i r

r

r i j

Loss S S Loss S S

Loss S S V
N

j



 

=

= 

+ +   

The meanings of coefficients are same with former parts.

4 EXPERIMENT

We train our network on ShapeNet part dataset[25]
containing 12288 models in train split, 2874 models in test split,
16 categories from ShapeNet dataset. We train it using ADAM
[26] optimizer with an initial learning rate of 0.001, batch size of
16, for 100 epochs. Our experimental platform is a TITAN Xp
GPU with 3.5Ghz Xeon CPU. Point sets in coordinates format are
acquired by sampling random points on the triangles from
corresponding mesh models.

Because ShapeNet dataset is a sparse point clouds dataset. It
is not often used in point cloud compression task. However,
sparse point clouds can be used to test point clouds compression
algorithms because they are even more difficult to be
compressed than dense ones. Sparse point clouds contain less
redundant information than dense ones because they represent
shapes or surfaces by less points.

We compare the difference between the compression of
sparse point clouds and dense ones on simplified Stanford bunny
point cloud down sampled to 2048 points and 35947 points. PCL
and Draco are applied to compress the two models. The result is
in Table 4. The bpp means bits per point of compressed data and
loss is calculated by RMS to save computation. It proved
Compression on sparse point clouds is often harder to reach high
compression ratio and low reconstruction loss than that on

dense ones. Besides, we focus on the superiority of deep-learning
based compression methods in this paper. So, it is enough and
sound to use same sparse dataset to evaluate our compression
quality here.

4.1 Visualization of Training Process

To clearly show training process of the network, we choose a
few models and display their reconstructed point clouds after
different number of iterations, the result is in Table 1. From the
result, we can see that details appear gradually during the
training process. To demonstrate our encoder extracts efficient
features from point clouds, we implement interpolation between
two codewords in the latent space and reconstruct model on the
interpolation results. The model generalized is shown in Table 2.

Table 4 Sparse and dense point clouds compression

Points 2048 35947

Shape

 bpp Loss bpp Loss

Draco 1.02 0.0014 0.27 0.0013
PCL 2.50 0.0011 1.34 0.0009

4.2 3D Point Cloud Geometry Compression

Two key factors of compression ability are dimension of
bottleneck layer in encoder and bits for a single value in
codeword. To improve compression ratio, we add sparse

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

895

constraint for codeword to the loss function in this part. The
result when the size of bottleneck layer changes from 8 to 256
with 16 bits and 32 bits for a single value is shown in Table 3.
We choose a sample from test split of dataset to demonstrate the
influence of higher compression ratio on reconstruction. Loss
between raw model and decompressed model is calculated by
mean Multiscale CD on the whole test split of dataset.

From result in Table 3, we can see that changing bits for
single value or increasing bottleneck size makes little difference
when bottleneck size is large. The reason is sparse constraints
remove redundant information from codeword. Bits for single
value or bottleneck size only have considerable influence when
the codeword is too short to contain enough information. Then
we can conclude from Table 3 that codeword with bottleneck
size of 32 and 16 bits for single value is the best compression
condition with exact information. Loss increases greatly when
bottleneck size is smaller. So, our method can reach a best
compression ratio of 0.1026 bpp with reconstruction loss of
0.0629 on average.

We compare our deep learning-based compression method
with PCL and Draco in ultimate condition when bpp is small.
The result is displayed in Figure 3. Ours-16 and Ours-32 mean
our method with 16 bits and 32 bits for a single value. Numerical
analysis result is shown in Table 5. The compression ratio,
reconstruction loss and computation load consist of time cost
and minimum memory requirement are discussed then. We test
our work with batch size of 1 and 16. The result shows that our
work can reach 10 times higher compression ratio than Draco
and even 110 times higher than PCL while keeping a smaller
reconstruction loss.

However, PCL and Draco are faster and more memory saving.
It is because both PCL and Draco are based on C Program, which
can be much more efficient than Python. Besides, all
intermediate matrices may be saved in the memory during the
forward propagation process in TensorFlow framework, which
will greatly increase memory cost in our work. So, simplifying
network and replacing more operation in TensorFlow with C
program may improve the efficiency and reduce memory load.

Figure 3 Comparison with other compression algorithms
for point clouds in high compression ratio. Compression
ratio is evaluated with bpp (bits per point) and the loss is
calculated by Multiscale CD. Smaller bpp means higher
compression ratio. Compression ratio is improved by
increasing voxel size in PCL and decreasing the
quantization bits in Draco.

Table 5 Numerical comparison of compression methods

 PCL Draco
Our

batch 1
Our

batch 16
Memory
(on CPU)

26MB 3MB - -

Memory
(on GPU)

- - 611MB 2399MB

Encode
time

0.0105s 0.142ms 0.19s 0.67s

Decode
time

0.0154s 0.125ms 0.01s 0.11s

bpp 11.924 1.51 0.1026
loss 0.0671 0.4708 0.0629

Table 6 Numerical comparison of reconstruction quality

 FC FN Our work
loss 0.0656 0.0668 0.0618

Table 7 Comparison of reconstruction quality

Raw

FN

FC

Our
s

We compare reconstruction quality of our network with the
state-of-art. The result is displayed in Table 7 with fragile details
highlighted. It shows that our network performs well in
reconstructing details such as trigger on the pistol or hole on the
back of chair. Although FoldingNet (FN) [10] creates a smoother
surface, it cannot reconstruct discontinuous shape or non-
manifold surface well due to its folding operation transforming
2D plane to 3D surface. The fully connected auto-encoder (FC)
[12] improves that point. But it may build rougher surfaces. Our
network can reconstruct discontinuous shape smoothly, better
than both FN and FC.

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

896

Numerical comparison result is given in Table 6. The loss is
calculated by Multiscale CD proposed in section 3.1, which is
proved proper to evaluate reconstruction quality in section 4.4.
The result shows our work can reach a lower reconstruction loss
than both FN and FC.

4.3 Influence of Local Feature Size
Our encoder is based on the local feature extraction of raw

point clouds. Changing neighbor size for local feature extraction
will greatly affect the training result. We take a research on the
relationship between local region size and reconstruction quality.
The result is in Table 8.

Table 8 Reconstruction comparison in different neighbor
size for feature extraction. Loss is Multiscale CD with
neighbor size of 0.1, 0.2 and 0.4, not 0.05, 0.1, 0.2 and 0.4 in
other parts. Because it is not fair to evaluate loss with
minimum radius of 0.05 when changing minimum feature
extraction radius from 0.02 to 0.1

Neighbo
r size

0.02 0.05 0.08 0.1 Source

Loss 0.0519 0.0518 0.0523 0.0520

Sample

From the comparison we can see neighbor size of 0.05 has the
best reconstruction quality for details like the bending table legs
in Table 8. The result shows that neighbor size for local feature
extraction has a great impact on detail reconstruction. Too small
neighbor size cannot contain enough points to describe a local
feature, while too big size ignores details in the local region, both
leading to imprecise reconstruction.

4.4 Influence of Loss Function

We train our network with different loss functions. The
result is evaluated by different loss metrics on test split of
dataset and reported in Table 9. To visually compare influence of
different loss functions, we display reconstruction result of a few
models on networks trained with different loss functions in
Table 10. Multis-RMS means Multiscale RMS and Multis-CD
means Multiscale CD.

We can see that CD and RMS can reserve basic contour of
models, while leading to ununiform reconstruction. Some
regions contain sparser points while some contain denser.
Though EMD can reach more uniform result, it gives rougher
shape. Multiscale RMS and Multiscale CD can both achieve
accurate and uniform reconstruction. According to Table 9,
network trained with CD reach both smaller CD loss and RMS
loss, demonstrating CD is stronger constraint than RMS.
Multiscale CD and Multiscale RMS follow the same rule. So,
Multiscale CD is also stronger than Multiscale RMS. Multiscale
CD is the best loss function, powerful to train network making
precise and uniform reconstruction.

Table 9 Losses on the test split

Training
Loss

RMS CD EMD
Multis-

RMS
Multis-

CD
Mean
CD

0.0320
0.030

5
0.0330 0.0325 0.0316

Mean
RMS

0.0408
0.038

6
0.0425 0.0419 0.0408

EMD 0.1065 0.1163
0.056

8
0.0692 0.0683

Multis-
CD

0.0664 0.0646 0.0621 0.0627 0.0618

Multis-
RMS

0.0837 0.0817 0.0759 0.0772 0.0772

Table 10 Reconstruction quality of networks trained with
different loss function

Source RMS CD EMD
Multis-

RMS
Multis-CD

5 CONCLUSION

In this work, we present a new method for 3D point cloud
compression by deep learning, also the first deep-learning based
point cloud geometry compression algorithm. It shows great
potential due to its parallel processing ability and higher
compression ratio than any other methods while keeping
acceptable loss. The experiment has shown that it outperforms
PCL and Draco in high compression ratio condition. The key of
our compression method is an auto-encoder with hierarchical
structure performing better than the state-of-art in
reconstruction quality, especially on local details. More work
will be devoted to further improving the reconstruction quality.
There is no doubt that deep learning is the future development
direction of data compression.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science

Foundation of China under Grant U1509210，61836015.

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

897

REFERENCES
[1] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. Generative and

discriminative voxel modeling with convolutional neural networks.
Advances in Neural Information Processing Systems, Workshop on 3D
learning, 2017. 3

[2] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner.
Scannet: Richly-annotated 3D reconstructions of indoor scenes. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.
3

[3] D. Maturana and S. Scherer. Voxnet: A 3D convolutional neural network for
real-time object recognition. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 922–928. IEEE, 2015. 3

[4] Riegler G, Osman Ulusoy A, Geiger A. Octnet: Learning deep 3d
representations at high resolutions[C]//Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017: 3577-3586.

[5] Klokov R, Lempitsky V. Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models[C]//Proceedings of the IEEE
International Conference on Computer Vision. 2017: 863-872.

[6] Zhu Z, Wang X, Bai S, et al. Deep learning representation using
autoencoder for 3D shape retrieval[J]. Neurocomputing, 2016, 204: 41-50.

[7] Chen D Y, Tian X P, Shen Y T, et al. On visual similarity based 3D model
retrieval[C]//Computer graphics forum. Oxford, UK: Blackwell Publishing,
Inc, 2003, 22(3): 223-232.

[8] Qi C R, Su H, Mo K, et al. Pointnet: Deep learning on point sets for 3d
classification and segmentation[C]//Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017: 652-660.

[9] Qi C R, Yi L, Su H, et al. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space[C]//Advances in Neural Information Processing
Systems. 2017: 5099-5108.

[10] Yang Y, Feng C, Shen Y, et al. Foldingnet: Point cloud auto-encoder via deep
grid deformation[C]//Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018: 206-215.

[11] Mandikal P, Babu R V. Dense 3D Point Cloud Reconstruction Using a Deep
Pyramid Network[J].

[12] Achlioptas P, Diamanti O, Mitliagkas I, et al. Learning Representations and
Generative Models for 3D Point Clouds[C]//International Conference on
Machine Learning. 2018: 40-49.

[13] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial
nets[C]//Advances in neural information processing systems. 2014: 2672-
2680.

[14] Li J, Chen B M, Hee Lee G. So-net: Self-organizing network for point cloud
analysis[C]//Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018: 9397-9406.

[15] Shao Y, Zhang Q, Li G, et al. Hybrid Point Cloud Attribute Compression
Using Slice-based Layered Structure and Block-based Intra
Prediction[C]//2018 ACM Multimedia Conference on Multimedia
Conference. ACM, 2018: 1199-1207.

[16] Schnabel R, Klein R. Octree-based Point-Cloud Compression[J]. Spbg, 2006,
6: 111-120.

[17] Gumhold S, Kami Z, Isenburg M, et al. Predictive point-cloud
compression[C]//Siggraph Sketches. 2005: 137.

[18] Morell V, Orts S, Cazorla M, et al. Geometric 3D point cloud compression[J].
Pattern Recognition Letters, 2014, 50: 55-62.

[19] de Queiroz R L, Chou P A. Transform coding for point clouds using a
gaussian process model[J]. IEEE Transactions on Image Processing, 2017,
26(7): 3507-3517.

[20] Kammerl J, Blodow N, Rusu R B, et al. Real-time compression of point cloud
streams[C]//2012 IEEE International Conference on Robotics and
Automation. IEEE, 2012: 778-785.

[21] Rusu R B, Cousins S. Point cloud library (pcl)[C]//2011 IEEE International
Conference on Robotics and Automation. 2011: 1-4.

[22] “Draco 3D graphics compression,” https://google.github.io/draco/, Accessed:
2018-01-10.

[23] Yu L, Li X, Fu C W, et al. Pu-net: Point cloud upsampling
network[C]//Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018: 2790-2799.

[24] Rubner, Y., Tomasi, C., and Guibas, L. J. The earth mover’s distance as a
metric for image retrieval. IJCV, 2000.

[25] Yi L, Kim V G, Ceylan D, et al. A scalable active framework for region
annotation in 3d shape collections[J]. ACM Transactions on Graphics (TOG),
2016, 35(6): 210.

[26] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Int.
Conf.on Learning Representations (ICLR), 2015.

Session 2D: 3D Visual Processing MM ’19, October 21–25, 2019, Nice, France

898

	ABSTRACT
	1  INTRODUCTION
	2  RELATED WORKS
	2.1  Representation Learning for Point Cloud
	2.2  Point Cloud Geometry Compression

	3  HIERARCHICAL AUTO-ENCODER
	3.1  Multiple Scale Feature Extraction
	3.2  Hierarchical Reconstruction
	3.3  Loss Function
	3.1.1 Chamfer Distance.
	3.1.2 Earth Mover’s Distance.
	3.1.3 Root Mean Square Error.
	3.1.4 Multiscale Loss.
	3.1.5 Sparse Constraint.
	3.1.6 Sparse Multiscale Loss.

	4  EXPERIMENT
	4.1  Visualization of Training Process
	4.2  3D Point Cloud Geometry Compression
	4.3  Influence of Local Feature Size
	4.4  Influence of Loss Function

	5  CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

