
3D Point Cloud Geometry Compression on Deep Learning 
Tianxin Huang1,2, Yong Liu1,2* 

1 The state key laboratory of industrial control technology, Zhejiang University  2 NetEase Fuxi AI Lab 

21725129@zju.edu.cn  yongliu@iipc.zju.edu.cn 

 

ABSTRACT 
3D point cloud presentation has been widely used in computer 
vision, automatic driving, augmented reality, smart cities and 
virtual reality. 3D point cloud compression method with higher 
compression ratio and tiny loss is the key to improve data 
transportation efficiency. In this paper, we propose a new 3D 
point cloud geometry compression method based on deep 
learning, also an auto-encoder performing better than other 
networks in detail reconstruction. It can reach much higher 
compression ratio than the state-of-art while keeping tolerable 
loss. It also supports parallel compressing multiple models by 
GPU, which can improve processing efficiency greatly. The 
compression process is composed of two parts. Firstly, Raw data 
is compressed into codeword by extracting feature of raw model 
with encoder. Then, the codeword is further compressed with 
sparse coding. Decompression process is implemented in reverse 
order. Codeword is recovered and fed into decoder to reconstruct 
point cloud. Detail reconstruction ability is improved by a 
hierarchical structure in our decoder. Latter outputs are grown 
from former fuzzier outputs. In this way, details are added to 
former output by latter layers step by step to make a more 
precise prediction. We compare our method with PCL 
compression and Draco compression on ShapeNet40 part 
dataset. Our method may be the first deep learning-based point 
cloud compression algorithm. The experiments demonstrate it is 
superior to former common compression algorithms with large 
compression ratio, which can also reserve original shapes with 
tiny loss. 
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1  INTRODUCTION 

3D point cloud data is playing a more and more important 
role in many real-life fields, such as automatic navigation and 
immersive communication. It puts higher and higher 
requirement on efficiency of data transmission and memory of 
data storage. Under the circumstance, better lossless point cloud 
data compression methods with higher compression ratio are 
necessary. Deep learning is a new idea for data compression of 
3D point cloud, supposed to reach higher compression ratio than 
existing methods and keep tiny loss of data. With appropriate 
structure, the network can find out one reasonable solution for 
the problem of point cloud compression. However, existing deep 
learning methods for point cloud reconstruction do poorly in 
detail reconstruction. On this occasion, we propose an auto-
encoder network having good performance on detail 
representation of 3D model, better than the state of art. By 
adding constraints to size of codeword extracted by the encoder, 
our network can reach higher compression ratio than almost any 
existing 3D point cloud compression method. Besides, 
compression by deep learning is based on matrix operations, 
which means our compression and decompression processes can 
use GPU to achieve parallel processing, dealing with multiple 
models at a time, which can greatly improve efficiency.  

Our network architecture is shown in Figure 1. In this work, 
we use similar hierarchical structure proposed in PointNet++ as 
our encoder to capture local structure of the model. As for the 
decoder, we use a reverse hierarchical neutral network to 
generate models of different resolutions gradually. High-
resolution model will grow up from former low-resolution model. 
The progressive generation method is good at detail 
reconstruction because network between two output layers only 
needs to add details to the basic framework. Data compression 
process for point cloud data based on deep learning can be 
divided into two parts. Firstly, a model is encoded by the 
network encoder to a codeword; Then the codeword is further 
encoded by sparse coding. Receiver will decode the codeword 
containing information of raw model in reverse order. It will be 
then fed to the decoder to reconstruct point cloud. 
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Figure 1 The architecture of our network. The whole process is consisting of network part and sparse coding part. The 
network part achieves data compression and decompression by a pair of encoder and decoder. Codeword from encoder is 
sparse due to sparse constraint in loss function. Sparse coding is used to improve compression ratio by further compressing 
sparse codeword from network encoder. Compressed codeword is transferred from sender to receiver. Encoder and decoder 
will be saved separately by sender and receiver to finish the whole process. 

 

Figure 2 Structure of Decompression layer. Our decompression layer generates local feature spaces consist of M feature 
vectors by deconvolution. Then the local feature spaces are divided to 4 subspaces by deconvolution in another dimension. 
Subspaces are finally combined into single feature vectors again by convolution. In this case, raw feature vectors are 
expanded to 4 times more, then transformed into higher resolution model. Meanwhile, local feature vectors from subspaces 
are directly propagated to next decompression layer and merged with global feature to make up local feature matrix in 
next decompression layer. 
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 Last layer of the encoder is named as bottleneck layer. 
Dimension of bottleneck layer and bits occupied by each floating 
number in the codeword are two key factors of compression 
result. There are three kinds of data type for floating number: 
semi-precision floating number taking up 16 bits, single-
precision floating number taking up 32 bits, and double-
precision floating number taking up 64 bits. In our work, we test 
the influence of dimension of bottleneck layer on the recovery 
effect in 16 bits and 32 bits data type precision of codewords. We 
also give a best compression ratio for 3D point clouds by short 
codeword and low data type precision of codewords in sec 4. 

Our contribution can be summarized as: 

We propose a new deep auto-encoder processing unorder 
point clouds data with lower reconstruction loss and stronger 
detail reconstruction ability than former unsupervised neutral 
networks; 

We design a new deep learning-based method for sparse 
point clouds geometry compression. It can reach higher 
compression ratio than any existing compression methods with 
acceptable loss. It also provides three outputs in different 
resolutions, suitable for different occasions. 

2  RELATED WORKS 

2.1  Representation Learning for Point Cloud 

Most neutral networks dealing with point cloud are based on 
the voxel model such as [1],[2] and [3], partitioning raw model 
into 3d regular voxels like pixel in 2d. However, point cloud data 
is often sparse in Euclidean space. It leads to great waste of time 
and memory to convert raw data detected in coordinates format 
to voxels. Besides, resolution of models is greatly restricted by 
memory, since models with higher resolution ask for much 
smaller voxels. OctNet proposed by Gernot et al. [4] tries to 
reduce computational and memory requirements by converting 
voxel models to unbalanced octrees with different size of leaf 
nodes. In this way, high-resolution model can be represented as 
the combination of voxels of different sizes, reducing memory 
waste and improve computation efficiency. But it still wastes a 
lot to convert raw data in xyz format to voxels. Kd-Network [5] 
deals with point cloud based on Kd-trees to reduce space 
complexity. Some works also describes 3d point cloud models as 
multi-view images, such as [6] and [7]. However, conversion to 
collections of images may destroy spatial feature of 3d model.  

PointNet [8] and PointNet++ [9] have started the fashion to 
process point clouds in xyz format directly. They concentrate on 
point clouds classification and scene segmentation. FoldingNet 
by Yao et al. [10] may be first one learning representation of 
model from unorder raw point clouds directly. They modified a 
new operation named folding to complete point clouds 
reconstruction from codewords extracted by similar 1-D 
convolution with PointNet. The folding operation means to 
combine feature with 2-D grid samples and fold the 2-D grid to 
3D models. This operation can save a lot of memory. Their 

folding operation has been used as an efficient method in point 
clouds reconstruction to expand dimension such as in [11]. 
However, some subtle shape may be omitted in generation 

because they are too difficult to be transformed from 2-D grid，

such as the porous structure. Panos et al. [12] build an auto-
encoder on convolution layers and fully connected layers to 
learn representation of unorder point clouds. They train a few 
different GANs [13] based on the auto-encoder as generative 
networks and compare their generation ability. Their network 
gives a good generation result on unseen shapes, while still weak 
in details reconstruction. Jiaxin Li et al. [14] propose a new 
feature extraction method by sampling and grouping model with 
self-organized maps (SOM), instead of directly sampling by 
farthest point sampling in PointNet ++. It improves classification 
accuracy greatly.  

2.2  Point Cloud Geometry Compression 

Point cloud compression has always been an important 
research orientation in computer graphics since the increasing 
capability of 3D data scanning devices. Point cloud compression 
includes three main types [15]: geometry compression, attribute 
compression and dynamic motion-compensated compression. 
We concentrate on geometry compression in this paper. Some 
compression algorithms compress point clouds by saving data in 
a memory efficient data structure such as [16], [17] and [18]. 
Some encode point cloud by building a mathematic model to 
describe point cloud structure like [19]. Tim.et al [20] propose a 
compression method by transforming 3d point cloud to 2D maps, 
compressing them with image compression algorithms such as 
JPEG. Two common point cloud compression methods are PCL 
[21] and Draco [22]. PCL compresses point cloud by converting 
raw data to voxels and encoding the voxels with an octree. Its 
compression ratio can be adjusted by changing the voxel 
precision. Draco provides 10 alternative compression levels. It 
also supports further lossy compression by reducing 
quantization bits. 

3  HIERARCHICAL AUTO-ENCODER 

3.1  Multiple Scale Feature Extraction 

PointNet and PointNet++ are the pioneers of directly using 
raw point cloud data only composed of coordinates. PointNet 
uses 1-D convolutional layers with kernel size 1 to extract point 
feature, and max pooling layer to produce a joint representation, 
invariant to permutation of point sets. However, PointNet 
doesn’t offer much attention to preserve local structure of raw 
data. On this occasion, PointNet++ applies PointNet recursively 
in each local region to acquire feature of local structures. We use 
modified multiscale hierarchical encoder in our work. Local 
region centers are obtained by farthest point sampling (FPS), 
which means to choose point farthest from all former sampled 
points in rest point set iteratively. And local regions are acquired 
by calculating k nearest neighbors in r radius bounding sphere. If 
the number of points in this bounding sphere is less than k, then 
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the region center will be replicated to keep k neighbors in the 
bounding sphere. Features of local regions are also extracted by 
1-D convolutional layers and max pooling layers. Centers of 
local regions are used to confirm new centers for next local 
feature extraction.  

Coordinates of these centers are combined with local features 
to make up new features fed to next local feature extraction 
layer. Finally, all local features will be combined by a global max 
pooling layer to produce a synthesize feature. However, 
hierarchical encoder in PointNet ++ ignores to reserve basic 
shape feature. The lowest resolution model sampled describes 
contour of raw model. Its concatenation with feature matrix may 
affect the reservation of shape feature. So, we use an additional 
structure to extract feature of the lowest-resolution model. 
Feature extracted from the lowest-resolution model is 
concatenated together with synthesize feature from former 
hierarchical extraction. In this way, feature of basic contour is 
strengthened in the final codeword, meaningful to improve 
reconstruction quality.  

3.2  Hierarchical Reconstruction 

As for the reconstruction of point cloud from the compressed 
data, we use a hierarchical structure to improve the ability to 
reconstruct details. The structure consists of three output layers 
in different resolutions. The output of first output layer gives a 
basic frame of the whole point cloud, and latter layers add more 
details to the frame gradually. The output of latter layer relies on 
former output. In this way, we can get a multi-resolution 
representation of raw point cloud data.  

The core of more accurate generation is the decompression 
layer, shown in Figure 2. Local feature decompressed in the last 
part, together with codeword containing global feature, and the 
output coordinates are concatenated together and fed to the 
decompression layer to acquire new local feature matrix. The 
decompression layer is achieved by local deconvolution and local 
extension architectures shown in Figure 2.  

The decompression process is similar to an upsampling 
process in [23]. They all generate more precise model from a 
fuzzier one. However, size of first two models in out structure 
are too small to contain enough structure information, almost 
impossible to reconstruct more precise model by directly 
upsampling former model. So, our decompression layer 
combines local feature matrix and fuzzier model together to 
make accurate reconstruction. 

3.3  Loss Function 

Loss function is important for the training process. The key is 
how to evaluate the difference between two similar point cloud 
models. There are a few kinds of methods to evaluate the 
difference. The comparison of training results of them is in sec.4. 

3.1.1 Chamfer Distance. 

The Chamfer Distance (CD) is a commonly used metric to 
calculate the loss for point sets. It measures the mean distance of 
one point to its nearest neighbor between two point sets. 
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3.1.2 Earth Mover’s Distance. 

Similar to the Chamfer Distance, the Earth Mover’s Distance 
(EMD) [24] is also a commonly used loss function. It is supposed 
to perform better than CD, also far more complicated. EMD tries 
to find a bijection between two point sets and calculate the mean 
distance between corresponding points: 
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  is the bijection from point set 1S  to 2S . The 

calculation of EMD needs to solve an optimization problem to 
acquire the bijection, which is a great waste of time and memory. 

3.1.3 Root Mean Square Error. 

Root Mean Square Error (RMS) is not often used as loss 
function. However, another metric related to RMS, Peak Signal 
to Noise Ratio (PSNR), is widely used in point cloud compression 
to evaluate the quality of decompression. 

The RMS is defined as square root of mean squared distance 
of one point to its nearest neighbor between two point sets: 
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3.1.4 Multiscale Loss. 

Former metrics to evaluate the model difference is lack of 
constraint of local details. Taking consideration of local 
difference can accelerate convergence of network and improve 
detail reconstruction ability. We combine local Loss evaluation 
from multiple scales of the sampled points’ neighbors with the 
basic Loss evaluation method to make up the Multiscale loss 
function. It is defined as: 
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Table 1 Illustration of training process 

input 1 epoch 20 epochs 40 epochs 60 epochs 80 epochs 100 epochs 

       

       

       

Table 2 Interpolation between point clouds in latent space 

Source Interpolation between different point clouds in same class Target 

        

        
 Interpolation between point clouds in different classes  

        

        

 is the coefficient of frame loss, and  means the 

coefficient of loss of local region with radius of r.  and  

mean local point sets located by the ith sampled central point 

with radius of r from raw point sets  and .  

3.1.5 Sparse Constraint.  

To reach higher compression ratio, we need to restrain the 
size of compressed codeword. Raw codeword is further 
compressed by sparse coding. Sparse coding means to record 
positions of nonzero in codeword by encoding these positions 
into binary format.  

In this way, a codeword of size 256 only need 8 32 
dimensional floats to record its nonzero distribution, followed by 
n nonzero values to contain all information. 

So, decreasing the number of nonzero values in codeword can 
improve compression ratio. With that in mind, L1 regularization 
is used to reduce the number of nonzero values in codeword. It is 
defined as: 

( ) ( )= 
i

CodeLimit V V i  

V is the codeword, and ε is the coefficient of the 
regularization. 

3.1.6 Sparse Multiscale Loss. 

Finally, to improve compression ratio as high as possible 
while keeping good reconstruction quality, we combine 
Multiscale loss and sparse constraint to compose the Sparse 
Multiscale loss. It is defined as: 
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Table 3 Compression experimental result 

32 bits 
Source Bottleneck 

size 
8 16 32 64 128 256 

bpp 0.1170 0.1408 0.1734 0.2258 0.2989 0.3936 

 

loss 0.0663 0.0643 0.0630 0.0634 0.0628 0.0628 

shape 

      
16 bits 

Bottleneck 
size 

8 16 32 64 128 256 

bpp 0.0380 0.0530 0.1026 0.1261 0.1897 0.2551 
loss 0.0732 0.0670 0.0629 0.0629 0.0634 0.0620 

shape 
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The meanings of coefficients are same with former parts. 

4  EXPERIMENT 

We train our network on ShapeNet part dataset[25] 
containing 12288 models in train split, 2874 models in test split, 
16 categories from ShapeNet dataset. We train it using ADAM 
[26] optimizer with an initial learning rate of 0.001, batch size of 
16, for 100 epochs. Our experimental platform is a TITAN Xp 
GPU with 3.5Ghz Xeon CPU. Point sets in coordinates format are 
acquired by sampling random points on the triangles from 
corresponding mesh models.  

Because ShapeNet dataset is a sparse point clouds dataset. It 
is not often used in point cloud compression task. However, 
sparse point clouds can be used to test point clouds compression 
algorithms because they are even more difficult to be 
compressed than dense ones. Sparse point clouds contain less 
redundant information than dense ones because they represent 
shapes or surfaces by less points.  

We compare the difference between the compression of 
sparse point clouds and dense ones on simplified Stanford bunny 
point cloud down sampled to 2048 points and 35947 points. PCL 
and Draco are applied to compress the two models. The result is 
in Table 4. The bpp means bits per point of compressed data and 
loss is calculated by RMS to save computation. It proved 
Compression on sparse point clouds is often harder to reach high 
compression ratio and low reconstruction loss than that on 

dense ones. Besides, we focus on the superiority of deep-learning 
based compression methods in this paper. So, it is enough and 
sound to use same sparse dataset to evaluate our compression 
quality here.  

4.1  Visualization of Training Process 

To clearly show training process of the network, we choose a 
few models and display their reconstructed point clouds after 
different number of iterations, the result is in Table 1. From the 
result, we can see that details appear gradually during the 
training process. To demonstrate our encoder extracts efficient 
features from point clouds, we implement interpolation between 
two codewords in the latent space and reconstruct model on the 
interpolation results. The model generalized is shown in Table 2. 

Table 4 Sparse and dense point clouds compression 

Points 2048 35947 

Shape 

  
 bpp Loss bpp Loss 

Draco 1.02 0.0014 0.27 0.0013 
PCL 2.50 0.0011 1.34 0.0009 

4.2  3D Point Cloud Geometry Compression 

Two key factors of compression ability are dimension of 
bottleneck layer in encoder and bits for a single value in 
codeword. To improve compression ratio, we add sparse 
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constraint for codeword to the loss function in this part. The 
result when the size of bottleneck layer changes from 8 to 256 
with 16 bits and 32 bits for a single value is shown in Table 3. 
We choose a sample from test split of dataset to demonstrate the 
influence of higher compression ratio on reconstruction. Loss 
between raw model and decompressed model is calculated by 
mean Multiscale CD on the whole test split of dataset.  

From result in Table 3, we can see that changing bits for 
single value or increasing bottleneck size makes little difference 
when bottleneck size is large. The reason is sparse constraints 
remove redundant information from codeword. Bits for single 
value or bottleneck size only have considerable influence when 
the codeword is too short to contain enough information. Then 
we can conclude from Table 3 that codeword with bottleneck 
size of 32 and 16 bits for single value is the best compression 
condition with exact information. Loss increases greatly when 
bottleneck size is smaller. So, our method can reach a best 
compression ratio of 0.1026 bpp with reconstruction loss of 
0.0629 on average. 

We compare our deep learning-based compression method 
with PCL and Draco in ultimate condition when bpp is small. 
The result is displayed in Figure 3. Ours-16 and Ours-32 mean 
our method with 16 bits and 32 bits for a single value. Numerical 
analysis result is shown in Table 5. The compression ratio, 
reconstruction loss and computation load consist of time cost 
and minimum memory requirement are discussed then. We test 
our work with batch size of 1 and 16. The result shows that our 
work can reach 10 times higher compression ratio than Draco 
and even 110 times higher than PCL while keeping a smaller 
reconstruction loss.  

However, PCL and Draco are faster and more memory saving. 
It is because both PCL and Draco are based on C Program, which 
can be much more efficient than Python. Besides, all 
intermediate matrices may be saved in the memory during the 
forward propagation process in TensorFlow framework, which 
will greatly increase memory cost in our work. So, simplifying 
network and replacing more operation in TensorFlow with C 
program may improve the efficiency and reduce memory load. 

 

Figure 3 Comparison with other compression algorithms 
for point clouds in high compression ratio. Compression 
ratio is evaluated with bpp (bits per point) and the loss is 
calculated by Multiscale CD. Smaller bpp means higher 
compression ratio. Compression ratio is improved by 
increasing voxel size in PCL and decreasing the 
quantization bits in Draco. 

Table 5 Numerical comparison of compression methods 

 PCL Draco 
Our 

batch 1 
Our 

batch 16 
Memory 
(on CPU) 

26MB 3MB - - 

Memory 
(on GPU) 

- - 611MB 2399MB 

Encode 
time 

0.0105s 0.142ms 0.19s 0.67s 

Decode 
time 

0.0154s 0.125ms 0.01s 0.11s 

bpp 11.924 1.51 0.1026 
loss 0.0671 0.4708 0.0629 

Table 6 Numerical comparison of reconstruction quality 

 FC FN Our work 
loss 0.0656 0.0668 0.0618 

Table 7 Comparison of reconstruction quality 

Raw 

    

FN 

    

FC 

    

Our
s 

    

We compare reconstruction quality of our network with the 
state-of-art. The result is displayed in Table 7 with fragile details 
highlighted. It shows that our network performs well in 
reconstructing details such as trigger on the pistol or hole on the 
back of chair. Although FoldingNet (FN) [10] creates a smoother 
surface, it cannot reconstruct discontinuous shape or non-
manifold surface well due to its folding operation transforming 
2D plane to 3D surface. The fully connected auto-encoder (FC) 
[12] improves that point. But it may build rougher surfaces. Our 
network can reconstruct discontinuous shape smoothly, better 
than both FN and FC.  
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Numerical comparison result is given in Table 6. The loss is 
calculated by Multiscale CD proposed in section 3.1, which is 
proved proper to evaluate reconstruction quality in section 4.4. 
The result shows our work can reach a lower reconstruction loss 
than both FN and FC. 

4.3  Influence of Local Feature Size 
Our encoder is based on the local feature extraction of raw 

point clouds. Changing neighbor size for local feature extraction 
will greatly affect the training result. We take a research on the 
relationship between local region size and reconstruction quality. 
The result is in Table 8. 

Table 8 Reconstruction comparison in different neighbor 
size for feature extraction. Loss is Multiscale CD with 
neighbor size of 0.1, 0.2 and 0.4, not 0.05, 0.1, 0.2 and 0.4 in 
other parts. Because it is not fair to evaluate loss with 
minimum radius of 0.05 when changing minimum feature 
extraction radius from 0.02 to 0.1 

Neighbo
r size 

0.02 0.05 0.08 0.1 Source 

Loss 0.0519 0.0518 0.0523 0.0520 

 
Sample 

    

From the comparison we can see neighbor size of 0.05 has the 
best reconstruction quality for details like the bending table legs 
in Table 8. The result shows that neighbor size for local feature 
extraction has a great impact on detail reconstruction. Too small 
neighbor size cannot contain enough points to describe a local 
feature, while too big size ignores details in the local region, both 
leading to imprecise reconstruction.  

4.4  Influence of Loss Function 

We train our network with different loss functions. The 
result is evaluated by different loss metrics on test split of 
dataset and reported in Table 9. To visually compare influence of 
different loss functions, we display reconstruction result of a few 
models on networks trained with different loss functions in 
Table 10. Multis-RMS means Multiscale RMS and Multis-CD 
means Multiscale CD.  

We can see that CD and RMS can reserve basic contour of 
models, while leading to ununiform reconstruction. Some 
regions contain sparser points while some contain denser. 
Though EMD can reach more uniform result, it gives rougher 
shape. Multiscale RMS and Multiscale CD can both achieve 
accurate and uniform reconstruction. According to Table 9, 
network trained with CD reach both smaller CD loss and RMS 
loss, demonstrating CD is stronger constraint than RMS. 
Multiscale CD and Multiscale RMS follow the same rule. So, 
Multiscale CD is also stronger than Multiscale RMS. Multiscale 
CD is the best loss function, powerful to train network making 
precise and uniform reconstruction. 

Table 9 Losses on the test split 

Training 
Loss 

RMS CD EMD 
Multis-

RMS 
Multis- 

CD 
Mean 
CD 

0.0320 
0.030

5 
0.0330 0.0325 0.0316 

Mean 
RMS 

0.0408 
0.038

6 
0.0425 0.0419 0.0408 

EMD 0.1065 0.1163 
0.056

8 
0.0692 0.0683 

Multis-
CD 

0.0664 0.0646 0.0621 0.0627 0.0618 

Multis-
RMS 

0.0837 0.0817 0.0759 0.0772 0.0772 

Table 10 Reconstruction quality of networks trained with 
different loss function 

Source RMS CD EMD 
Multis-

RMS 
Multis-CD 

      

      

      

      

5  CONCLUSION 

In this work, we present a new method for 3D point cloud 
compression by deep learning, also the first deep-learning based 
point cloud geometry compression algorithm. It shows great 
potential due to its parallel processing ability and higher 
compression ratio than any other methods while keeping 
acceptable loss. The experiment has shown that it outperforms 
PCL and Draco in high compression ratio condition. The key of 
our compression method is an auto-encoder with hierarchical 
structure performing better than the state-of-art in 
reconstruction quality, especially on local details. More work 
will be devoted to further improving the reconstruction quality. 
There is no doubt that deep learning is the future development 
direction of data compression. 
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