
3QNet: 3D Point Cloud GeometryQuantization Compression Network
TIANXIN HUANG, Zhejiang University, China
JIANGNING ZHANG, Zhejiang University, China
JUN CHEN, Zhejiang University, China
ZHONGGAN DING, Tencent youtu Lab, China
YING TAI, Tencent youtu Lab, China
ZHENYU ZHANG, Tencent youtu Lab, China
CHENGJIE WANG, Tencent youtu Lab, China
YONG LIU∗, Zhejiang University, China
Since the development of 3D applications, the point cloud, as a spatial descrip-
tion easily acquired by sensors, has been widely used in multiple areas such
as SLAM and 3D reconstruction. Point Cloud Compression (PCC) has also
attracted more attention as a primary step before point cloud transferring
and saving, where the geometry compression is an important component
of PCC to compress the points geometrical structures. However, existing
non-learning-based geometry compression methods are often limited by
manually pre-defined compression rules. Though learning-based compres-
sion methods can significantly improve the algorithm performances by
learning compression rules from data, they still have some defects. Voxel-
based compression networks introduce precision errors due to the voxelized
operations, while point-based methods may have relatively weak robustness
and are mainly designed for sparse point clouds. In this work, we propose a
novel learning-based point cloud compression framework named 3D Point
Cloud Geometry Quantiation Compression Network (3QNet), which over-
comes the robustness limitation of existing point-based methods and can
handle dense points. By learning a codebook including common structural
features from simple and sparse shapes, 3QNet can efficiently deal with
multiple kinds of point clouds. According to experiments on object models,
indoor scenes, and outdoor scans, 3QNet can achieve better compression
performances than many representative methods.

CCS Concepts: • Computing methodologies→ Computer vision represen-
tations; Image compression.

Additional Key Words and Phrases: point cloud, geometry compression,
network, learning

ACM Reference Format:
Tianxin Huang, Jiangning Zhang, Jun Chen, Zhonggan Ding, Ying Tai,
Zhenyu Zhang, Chengjie Wang, and Yong Liu. 2022. 3QNet: 3D Point Cloud
Geometry Quantization Compression Network. ACM Trans. Graph. 37, 4,
Article 187 (August 2022), 13 pages. https://doi.org/10.1145/3550454.3555481

∗denotes that Yong Liu is the corresponding author.

Authors’ addresses: Tianxin Huang, Zhejiang University, China; Jiangning Zhang,
Zhejiang University, China; Jun Chen, Zhejiang University, China; Zhonggan Ding,
Tencent youtu Lab, China; Ying Tai, Tencent youtu Lab, China; Zhenyu Zhang, Tencent
youtu Lab, China; Chengjie Wang, Tencent youtu Lab, China; Yong Liu, Zhejiang
University, China, yongliu@iipc.zju.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
0730-0301/2022/8-ART187 $15.00
https://doi.org/10.1145/3550454.3555481

Fig. 1. Main differences between existing learning-based compression frame-
works and ours. Voxel-based methods (a) introduce extra precision loss from
voxelized 3D CNN, while point-based methods (b) are mainly designed for
sparse points and have relatively poor robustness. Besides, both of them
need to train a separate network for each compression level, which is quite
inconvenient. As a point-based method, 3QNet (c) can flexibly change com-
pression levels with the same network by adjusting the hyper-parameter
K and l after training. It has good robustness and can process dense point
clouds with different spatial distributions.

1 INTRODUCTION
With the rapid development of real-time 3D sensors like LiDAR and
depth camera, 3D point clouds have been widely used in applications
such as SLAM [Cadena et al. 2016], 3D reconstruction [Gropp et al.
2020] and object detection [Qi et al. 2018; Shi et al. 2019]. Increase-
ment of points leads to the increment of transmission burden and
saving cost. In this case, well-performed point cloud compression
(PCC) algorithms with high efficiency and low cost are required.
PCL [Rusu and Cousins 2011] is a widely-used library including lots
of typical operations on point clouds. It provides an octree-based
track for point cloud compression. Draco [Galligan et al. 2018] is
proposed by Google for high efficient 3D model compression, which
can efficiently handle both 3D mesh models and point clouds. MPEG

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

https://doi.org/10.1145/3550454.3555481
https://doi.org/10.1145/3550454.3555481
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3550454.3555481&domain=pdf&date_stamp=2022-11-30

187:2 • Tianxin et al.

Group starts two representative point cloud compression method-
ologies, including geometry-based PCC (G-PCC) and video-based
PCC (V-PCC) [Graziosi et al. 2020]. G-PCC encodes point clouds
based on spatial structures of 3D point clouds with the octree, while
V-PCC works by processing 2D images projected from 3D point
Clouds. These non-learning-based compression algorithms use dif-
ferent methods to quantize and encode coordinates directly. They
have good robustness for point clouds with different spatial distribu-
tions, while the pre-defined compression rules may limit the further
improvements of compression performances.
Since the rise of deep learning-based methods, many researches

have explored to compress 3D point clouds with neural networks.
Most of them [Quach et al. 2020; Wang et al. 2021a,b] are based on
the voxel representation, while the others [He et al. 2022; Huang
and Liu 2019] try to deal with the coordinates directly. Learning-
based methods can often achieve better compression performances
than non-learning-based algorithms by learning a more memory-
saving encoding strategy from the training data. However, there is
still room for improvements in these methods. Generally speaking,
voxel-based methods often suffer from voxel precision loss due to
the coordinate-voxel transformation. Though point-based methods
avoid the precision loss, existing techniques [He et al. 2022; Huang
and Liu 2019] mainly work on sparse point clouds with similar
spatial distributions as training data. In real applications, it is not
realistic to always acquire training data with the same distribution
as the test scenario, where the compression of relatively dense
point clouds is more valuable and challenging. Besides, we often
need multiple compression levels to balance the encoding bits and
distortions. These learning-based methods need to train a separate
network for each compression level, which is quite inconvenient.

In this work, we propose a new learning-based point cloud com-
pression framework named 3QNet to get over mentioned problems.
The main differences between 3QNet and existing compression
methods are presented in Fig. 1. 3QNet has better robustness than
existing point-based methods and can flexibly change the compres-
sion level with the same trained network. After training on simple
and sparse models, 3QNet can achieve good performances on dense
point clouds with quite different spatial distributions, such as objects,
indoor and outdoor scenes. For dense models, we propose a model
breaking strategy (MBS) to divide the whole models into smaller
patches, where the acquired patches are further processed separately
with compression and decompression networks. As 3D shapes are
composed of multiple similar tiny local shapes, we propose Hierar-
chical Compression and Progress Decompression to compress and
decompress the point clouds by their local geometrical shapes. By
designing detachable multilevel compression and decompression
networks, we can naturally control the balance between encoding
bits and shape distortions by adjusting the network level after a
single training. The generic codebook composed of multiple com-
mon features is learned from different models during the training
process. During the compression period, local features are extracted
with Hierarchical Compression and encoded with their indexes of
nearest neighbors in the codebook. In other words, local features
are quantized and encoded with the codebook in the feature space.
Unlike numerical quantization operations in [He et al. 2022; Wang
et al. 2021a,b; Wen et al. 2020], quantization with the codebook

can use indexes including fewer bits to encode extended features,
which is appropriate to encode multiple local features. Then during
the decompression period, local features are decoded through the
codebook with the encoded indexes, which are used to recover local
shapes with Progress Decompression. The local shapes are finally
combined back into decompressed results. The main contributions
of this work can be summarized as follows.

• We propose a novel point-based 3D point cloud geometry
compression framework, which can be efficiently applied to
different dense point clouds;

• We introduce a codebook-based encoding method to trans-
form features into more memory-saving binary codes;

• By defining detachable hierarchical compression and progress
decompression networks, our framework is flexible to change
the compression level after only one training.

• According to the experiments, after training on small and
sparse models, our method can work well on point clouds
with different spatial distributions without any further fine-
tuning, which shows its good robustness.

2 RELATED WORKS

2.1 Non-learning-based Geometry Compression
Meshes and point clouds are two widely-used 3D geometric rep-
resentations. Mesh models are composed of vertexes and faces
constructed by the connectivity/topology between vertexes. Mesh
compression methods [Rossignac 1999; Taubin and Rossignac 1998;
Touma and Gotsman 1998] are often achieved by saving the memory
of topology through intermediate representation, where the ver-
texes can also be compressed with the topological information. Point
clouds are only composed of discrete points in 3D space without any
extra topology. Non-learning-based point cloud compression meth-
ods [Cao et al. 2019] usually works by encoding the point clouds
with manually-defined rules and data structures such as octree and
kd-tree. PCL [Rusu and Cousins 2011] and the octree geometry
codec in MPEG standard G-PCC [Graziosi et al. 2020] are two com-
monly used methods based on octree, while Draco [Galligan et al.
2018] released by Google uses a kd-tree to divide the space and
encodes points according to the occupancy of divided spaces. Since
point clouds can be regarded as sampling results from surfaces, the
trisoup geometry codec in MPEG standard G-PCC [Graziosi et al.
2020] improves the subjective quality at less encoding bits by con-
sidering the underlying triangles. Some algorithms do not compress
point clouds based on 3D geometry structures directly. They project
point clouds to 2D images and then compress them with video com-
pression algorithms, such as MPEG standard V-PCC [Graziosi et al.
2020]. Some works [Thanou et al. 2016] also explore the compres-
sion of dynamic point cloud sequences by introducing the motion
estimation between successive frames. As these non-learning-based
methods encode coordinates by pre-defined rules, their encoding
performances may be limited, while they are often quite robust for
different kinds of point clouds.

2.2 Learning-based Geometry Compression
Recently, with the development of deep learning architectures,
networks have been developed to reconstruct [Puang et al. 2022;

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

3QNet: 3D Point Cloud GeometryQuantization Compression Network • 187:3

Fig. 2. The training and application processes of 3QNet. C○ denotes concatenation. Model Breaking Strategy (MBS) is our proposed strategy to break the whole
point clouds into patches, while Hierarchical Compression and Progress Decompression are the networks for the compression or decompression of each patch,
respectively. During the application process, The input model Pi is broken into patches P 0

i ∼ PKi with MBS and parallel processed with Compression and
Decompression blocks. Take patch P 0

i as an example, it is normalized into P̂ 0
i with bounding box B0

i . Then P̂
0
i is transformed into local features F 0

c and center
points P̂ 0

c . Center points P̂
0
c ∼ P̂Kc are denormalized with corresponding bounding boxes and combined into Pc . F 0

c ∼ FKc are combined into Fc , which would
be encoded by the codebook Fp together with Pc to binary codes. During decompression, decoded local features F 0

d ∼ FKd and center points P 0
d ∼ PKd will be

used to reconstruct patches P 0
o ∼ PKo and concatenated into decompressed results Po . During the training process, the codebook Fp as well as networks in

compression and decompression blocks are trained with sparse and simple shapes by the reconstruction error and Quantization constraint, where the training
data are augmented with random sampling and rotation. More details about the encoding and decoding processes can be found in Sec. 3.3.

Tatarchenko et al. 2017], complete [Dai et al. 2017b] or generate [Luo
and Hu 2021] point clouds in an auto-encoder style. Based on simi-
lar point cloud auto-encoder approaches, learning-based geometry
compression methods are proposed to improve compression perfor-
mances by learning to extract memory-saving representations from
point clouds. Some of them [Nguyen et al. 2021; Quach et al. 2020;
Wang et al. 2021a,b] transform the original point clouds to voxel

models and adopt 3D CNN to encode their geometry structures to
binaries, which introduces extra precision loss. On the opposite side,
[Huang and Liu 2019] attempts to deal with coordinates directly
based on PointNet++ [Qi et al. 2017b]. The method performs well
on small and sparse models, while it may have limited robustness
because the global feature adopted for reconstruction may have
difficulty generating accurate contours on unseen shapes. Though

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

187:4 • Tianxin et al.

[He et al. 2022] improves the robustness by preserving the contours
with center points and introducing more complicated operations
such as the attention mechanism, its application is still limited to
sparse points in blocks partitioned from original dense point clouds.
These point-based compression methods avoid precision loss in
voxel-based networks, while their complex network structures limit
the further adoption on dense points. Octsqueeze [Huang et al. 2020]
and VoxelcontextNet [Que et al. 2021] are a series of works for the
outdoor scenes compression, which propose networks to improve
the entropy encoding performances in the octree-based compres-
sion. Muscle [Biswas et al. 2020] further introduces spatio-temporal
relationship between multiple scans of outdoor scenes to reduce the
bitrate of both geometry and intensity values. Depoco [Wiesmann
et al. 2021] develops a auto-encoder styled compression framework
for dense point cloud maps, which directly uses the extracted fea-
tures and associated points from encoder as the compressed data.
These works perform well on outdoor scenes, while they still need
to train the networks on outdoor scans with similar distributions
as test scenario. Besides, most existing learning-based compression
algorithms use a hyper-parameter in the training loss to balance
encoding bits and distortions for different compression levels. It
means they need multiple training processes to acquire networks
for different compression levels. In this work, we aim to build a
method capable of processing point clouds with different spatial
distributions after a single training process, which does not further
require training data corresponding to test scenarios. We focus on
the lossy compression [Huang and Liu 2019; Quach et al. 2020; Wang
et al. 2021a,b; Wen et al. 2020] with limited encoding bits.

3 METHODOLOGY
In this section, we introduce the technical details of 3QNet. The input
point cloud to be compressed Pi is broken into multiple patches P0i ∼

PKi with the proposed Model Breaking Strategy (MBS), where K is
the desired partition number. The details of MBS will be presented
in Sec. 3.1. Then the partitioned patch Pk ,k ∈ {0, 1, 2 · · ·K} are
normalized to −1 ∼ 1 with the bounding box Bk as:

P̂ki =
2Pki − (Bki [1] + B

k
i [0])

Bki [1] − Bki [0]
, (1)

where Bki = [min(Pki),max(Pki)] denotes the bounding box of Pki
determined by the bottom and top corner points. For convenience,
all normalized patches are marked with a hat. Center points P̂kc and
local representations Fkc are extracted from P̂ki with Hierarchical
Compression. To encode the center points of multiple partitioned
patches together, we combine the denormalized center points from
different regions as a coarse point clouds Pc and encode Pc as a
whole. Each patch will be assigned an id as an extra attribute during
compression to help distinguish points from different patchs. The
id is just presented from 1 to K during compression, which will be
attached and compressed as an attribute together with coordinates.
The same id does not get shared information between different
models. The denormalization process can be defined as:

Pkc =
(Bki [1] − Bki [0])P̂

k
c + B

k
i [1] + B

k
i [0]

2
. (2)

Pc and Fc are then encoded to binary codes with the learned code-
book Fp . During the decompression, quantized center points Pd
and local features Fd are decoded from the binary codes. Pd is then
partitioned to P0d ∼ PKd again by the patch id. By the application
of patch id, all quantized center points can be processed together
as Pc . As the encoding of local representations can also be parallel
encoded with the codebook Fp , our method can process multiple
patches simultaneously instead of processing patch by patch like
subdivision-based works such as [He et al. 2022; Quach et al. 2020].
The bounding box Bko for kth partitioned patch is then recovered
by normalizing Pkd following Eq. 1 with:

Bko = [min(Pkd),max(Pkd)], (3)

where k ∈ {1, 2, 3, ...,K}. The normalized P̂kd and decoded Fkd would
be used to recover normalized patch P̂ko , which is denormalized back
to the original scale again with Bko . Note that Bki and Bko are ensured
consistent with Boundary Sampling (BDSam)mentioned in Sec. 3.2.1.
Finally, all denormalized results are concatenated to reconstruct
decompressed results Po . By dealing with only normalized point
clouds with networks in Hierarchical Compression and Progressive
Decompression, the algorithm robustness is guaranteed.

3.1 Model Breaking Strategy
To apply the algorithm to dense point cloud models, some exist-
ing methods [Wang et al. 2021b; Wen et al. 2020] have proposed
available algorithms to partition dense models into small blocks.
However, these methods partition model and cluster patches directly
on original dense models, which have quite limited efficiency. We
design a Model Breaking Strategy (MBS) to partition models more
efficiently. The pipeline of MBS is presented in Fig. 4. We divide the
point cloud P into multiple sub-areas with 8 planes perpendicular to
the x-y plane as shown in Fig. 4, where the subsequent operations
are parallel implemented on each sub-area to improve the efficiency.
Then, we down-sample the jth divided point clouds Pj to sparser
point sets and find Kj centers Cj by the K-means algorithm, while
Kj is calculated with the Space estimation module by considering
the sizes of sub-areas, j ∈ {0, 1, 2, · · · , 7}. Applying K-means to
downsampled Pj would improve the efficiency over clustering on
Pj directly. Specifically, if we define the desired divided number
for P as K , then for each sub point cloud Pj , the estimated divided
number can be defined as:

Kj =
sum ∥Pj −mean(Pj)∥2∑7
j=0 sum ∥Pj −mean(Pj)∥2

· K, (4)

wheremean(·) denote the average operation to calculate the center
of Pj . We can see that bigger sub-areas will get more clustering
centers to cover corresponding shapes better. Finally, Pj are divided
intoKj parts according to their neighbors inCj . Original point cloud
P is broken into K patches efficiently under the parallel partitioning.

3.2 Compression and Decompression Networks
3QNet works by compressing multiple sub point clouds partitioned
by MBS. In this section, we present the specific structures of the

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

3QNet: 3D Point Cloud GeometryQuantization Compression Network • 187:5

Fig. 3. The structures of Hierarchical Compression and Progress Decompression. Fix and completion are two modules including shallow networks to refine
the center points or local representations. The geometrical features are more and more abstract from level 1 ∼ l . f 1c (·) ∼ f lc (·) are compression modules in
levels 1 ∼ l , while fd (·) is the parameter-shared decompression module. The structures are detachable to adjust the compression level. One network level
would be selected during application to switch between different compression levels, which means {P̂kc , F

k
c , P̂

k
d , F

k
d } ∈ {{P̂ 1

c , F
1
c , P̂

1
d , F

1
c }, {P̂

2
c , F

2
c , P̂

2
d , F

2
c }, · · · ,

{P̂ lc , F
l
c , P̂

l
d , F

l
c }}, while all networks are optimized together during training.

Fig. 4. The process of Model Breaking Strategy. Kj and Cj are the number
of center points and coordinates of center points in jth divided point cloud
Pj , j ∈ {0, 1, 2, · · · , 7}. We divide it at the center like a pie to ensure that
there are points in each sub-areas.

compression networks for kth sub point cloud P̂ki and decompres-
sion networks for P̂ko from Fig. 2, where k ∈ {1, 2, 3, ...,K}. The
whole structures of our compression and decompression networks
are presented in Fig. 3. Both Hierarchical Compression and Progres-
sive Decompression are composed of multiple levels 1 ∼ l . Take
level l as an example, Hierarchical Compression use compression
modules f 1c (·) ∼ f lc (·) to extract abstract representations Z lc and
center points Slc during compression, while a fix module is used
to refine Z lc into F lc . P̂ lc is kept same as Slc during compression. In
Progress Decompression, decoded local representations F ld and cen-
ter points P ld are refined to intermediate representations Z ld and Sld
with completion module, which are then expanded with multiple

Fig. 5. The structure of compression module in level l, which is f lc (·) in
Hierarchical Compression as shown in Fig 3. S lc is sampled into center
points S l+1c with Boundary Sampling (BDsam) by moving the farthest point
sampling (FPS) sampled points nearest to boundaries towards boundary
positions. Then Z l

c , S
l
c are aggregated around S l+1c with KNN like Point-

Net++ [Qi et al. 2017b] and abstracted into Z l+1
c by MLPs and pooling.

decompression modules fd (·) to acquire decompressed results Pko .
Networks in all levels are trained together during training. As shown
in Fig. 2, we use Hierarchical Compression to extract Pkc and Fkc and
Progress Decompression to process Pkd and Fkd . During application,
we select a specific level between 1 ∼ l , that is {P̂kc , Fkc , P̂kd , F

k
d } ∈

{{P̂1c , F 1c , P̂1d , F
1
c }, {P̂2c , F 2c , P̂2d , F

2
c }, · · · , {P̂ lc , F lc , P̂ ld , F

l
c }}.

3.2.1 Hierarchical Compression. Hierarchical compression plays
the role of aggregating features around multiple sampled centers. To

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

187:6 • Tianxin et al.

aggregate features from the original models, we adopt local feature
extraction structure in PointNet++ [Qi et al. 2017b] as compression
module, which is shown as f 1c (·) ∼ f lc (·) in Fig. 3. The specific
structure of compression module is presented in Fig. 5. For level l ,
given the center points Slc and local structural representations Z lc ,
compression module finds center points for the next level Sl+1c by
Boundary Sampling (BDSam), which moves the farthest point sam-
pling (FPS) sampled points nearest to boundaries towards boundary
positions as shown in Fig. 5. BDSam is introduced to guarantee
boundaries invariant between different levels so that the bound-
ary of P̂kc = P̂ lc = Slc is −1 ∼ 1 as P̂ki . As we have Pkc ≈ Pkd by
lossless coordinates encoding and decoding, then we can ensure
Bko = normalize(Pkd) ≈ normalize(Pkc) = Bki . It can avoid extra
memory to save the boundaries, which is unaffordable if there are
many patches. In this work, we sample 1/4 center points in each
level of the compression module. Local coordinates Slc and repre-
sentations Z lc are aggregated with KNN around center points Sl+1c ,
which are abstracted into new local representations Z l+1c for next
level with Multi Layer Perceptrons (MLPs). Note that we only move
a few points nearest boundaries to boundaries. Other points still fol-
low farthest point sampling to have a uniform distribution around
the patch.With slightly bigger K for KNN, we can ensure that almost
all points can be covered during compression. As there is not local
representation at level 1 in Fig. 3, only coordinates will be used to
extract Z l+1c in this condition.

3.2.2 Progress Decompression. To reconstruct models with multi-
ple resolutions and reduce the parameters, we propose a multilevel
Progress Decompression structure which is composed of multiple
parameter-shared decompression modules fd (·) as shown in Fig. 3.
The structure of decompression module is presented in Fig. 6. For
level l , the local representations Z ld are divided into 4 parts sym-
metric to the 1/4 sampling in the compression module, which are
combined with center points Sld to make hybrid representations
by MLPs. The hybrid representations are then concatenated with
the corresponding global feature acquired by pooling and used to
predict offsets for Sld and Z ld in order to expand them to higher
resolution Sl−1d and Z l−1d in compression level l − 1.

Fig. 6. The structure of decompression module, which is fd (·) in Progress
Decompression as shown in Fig 3. S ld and Z l

d in compression level l are
expanded to higher resolution S l−1d and Z l−1

d in compression level l − 1.

Fig. 7. Structures of the fix module (a) and completion module (b). Fix
module introduce global information to feature F lc from the compression
module by fusing features of S lc and Z l

c , while completion module refine
both decoded center points P̂ ld and F ld to predict S ld and Z l

d .

3.2.3 Fix and Completion. Though the whole algorithm seems to
work well with just mentioned modules, there are still some prob-
lems. Compression module extracts representations separately in
multiple local regions. For level l , the extracted representations Z lc
have relatively weak relationships with the global shape. Besides,
the encoding and decoding process may introduce extra information
loss to local representations F ld and center points P̂ ld . Considering
these problems, we introduce fix module to refine the extracted local
representation with global shape representation, while we propose
completion module to make up for the information loss from en-
coding and decoding processes. The structures of fix module and
completion module are presented in Fig. 7. Their organizations are
relatively similar, where both fix and completion modules extract
global representations to estimate the offsets of coordinates or lo-
cal representations. Fix module does not change the coordinates
in Slc because the original sampled results of BDsam mentioned
in Sec. 3.2.1 are needed to guarantee boundaries invariant, while
completion module changes both coordinates and representations
to make up for their possible information loss.

3.3 Encoding and Decoding
The encoding and decoding operations are used to achieve the
transformation between extracted structural information and binary
codes. The transformation includes operations for center points Pc
and local representations Fc . In this work, we introduce a different
encoding method. Unlike numerical quantization for features in
other works, we quantize continuous local representations Fc into
discrete representations Fd by their nearest neighbors in the learned
codebook Fp . Then the probabilities of each item in Fp are counted
and used to encode the indexes of Fd with Arithmetic coding [Witten
et al. 1987] into Cf . As different point clouds may have variant
statistic probabilities of quantized representations, we also encode
the probability sequence with sparse coding following [Huang and
Liu 2019] to Cp . Except for the encoding of representations, center

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

3QNet: 3D Point Cloud GeometryQuantization Compression Network • 187:7

Fig. 8. The encoding process from center points and local representations to
binary codes. Pc and Fc denote the center points and local representations
from original point clouds, respectively, while Fp is the learned codebook
to quantize Fc to Fd . The binary codes consist of binaries from coordinates
Cc , index probability Cp , and feature index Cf .

points Pc are encoded into binary Cc by Draco algorithm [Galligan
et al. 2018] under the lossless encoding with high precision, where
a 16 bits binary length is used to record the length of coordinates
binary. Finally, the binary codes are consist of Cc , Cp , and Cf as
shown in Fig. 8. The decoding process is the reverse process of
encoding, which is presented as follows.

1. Read the first 16 bits in binary codes as the coordinate length;
2. Decode center points Pd following the read length;
3. Recover the probability sequence by len(Fp) bits nonzero

positions and following nonzero values;
4. Decode the Indexes with the probability sequence in later

binary codes by Arithmetic decoding and transform decoded
indexes to local representations Fd according to Fp .

As the encoding and decoding processes are non-differentiable,
we use the quantized representations during the training process to
optimize the codebook as well as compression and decompression
networks. We relax the quantization operation based on the nearest
neighbor in the codebook to k neighbors during back-propagation,
which can be defined as:

Fd = fsд(

Nk∑
i=1

exp(−
∥F ik−Fc ∥2
σ+ |δk |2

)∑Nk
i=1 exp(−

∥F ik−Fc ∥2
σ+ |δk |2

)

· F ik − Fn) + Fn, (5)

where fsд(·) means to stop gradient during the inference. F ik and
Fn denote the ith representation in the k neighbors and the nearest
neighbor of Fc in the codebook, respectively. With Eq. 5, the quanti-
zation is accurately calculated during the forward process with Fn ,
then approximated with F ik to optimize items in the codebook dur-
ing back-propagation. Nk is the pre-defined number of k neighbors.
δk is a hyper-parameter controlling the distribution of weights for
F ik , while σ is a tiny value to protect denominators from being 0.

3.4 Compression Level Selection
To adapt the compression algorithm to different conditions, we need
to balance the decompressed shape distortions and compressed en-
coding bits. For example, encoding bits should be sacrificed for fewer
distortions in applications with higher precision requirements, while

distortions are allowed when fewer encoding bits are needed under
limited transmission bandwidth. In other words, we need to define
multiple compression levels to adapt to different applications. Exist-
ing learning-based methods [Huang and Liu 2019; Quach et al. 2020;
Wang et al. 2021a,b] use different pre-defined hyper-parameters to
adjust the trade-off between encoding bits and distortions, which
needs a separate training for each compression level and is quite
inconvenient. By designing detachable multilevel compression and
decompression networks, the compression level can be naturally
adjusted by selecting different network level l after training. As the
network level is limited, we further change the number of patches
K divided by MBS to get more compression levels. Specifically, we
select the compression level as:

K, l = Dcl (level), (6)

where Dcl {·} is a manually-defined dictionary, K and l are the num-
ber of partitioned patches and selected levels in Fig. 3, respectively.
level is the compression level. By changing K and l following the
pre-defined dictionary according to the selected level , we can flexi-
bly adjust the balance between distortions and encoding bits without
repeated training process.

3.5 Loss Function
The Loss Function of 3QNet is the weighted sum of multiple com-
ponents, including multi-scale reconstruction error, quantization
constraint, and expansion constraint.

3.5.1 Multi-scale reconstruction error. The commonly used Cham-
fer Distance (CD) [Fan et al. 2017] mainly works on the contours of
models, which will create quite non-uniform results. Earth Mover
Distance (EMD) tries to find a bijection between two point sets with
optimal algorithms. Though EMD performs well in constraining
overall shapes, it suffers from great memory and time cost. In this
work, we follow the multi-scale loss proposed in [Huang and Liu
2019] to construct our multi-scale reconstruction error, which can
be presented as follows:

LMCD (S1, S2) =
∑
i

∑
k

ξk
N

N∑
j=1

LCD (S
j ,k
i ,1 , S

j ,k
i ,2), (7)

where S j ,ki ,1 and S j ,ki ,2 are the local point sets with k points around jth
sampled center under ith resolution, respectively. N is the number
of captured local regions and ξk is the coefficient of errors of k
points local regions. As we train the Hierarchical Compression and
Progressive Decompression networks of multi levels together, we
add the multi-scale errors in different levels together to get the final
reconstruction errors as:

LMS =
∑
l

LMCD (S
l
i , S

l
o), (8)

where Sli and S
l
o denote the input compressed and output decom-

pressed point clouds in lth level, respectively. Note that we actually
use all network levels during training, where the cost is affordable
according to our experiments.

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

187:8 • Tianxin et al.

Fig. 9. The qualitative comparison on object models. All results are acquired under the compression level with about 1 bpp. We can see that our method tends
to produce smoother shapes with fewer defects.

Table 1. Comparisons with representative compression methods on object models. The ’+’ and ’-’ denote the average improvements or depreciation of 3QNet
against the compared methods, while the percentages denote the relative changes.

Non-learning Learning
Data Metrics PCL Draco G-PCC PCGCv2 GeoCNN

duck D1 +3.22 (16.40%) +8.95 (62.58%) +1.28 (8.53%) +8.37 (135.93%) +2.17 (14.77%)
D2 +5.12 (23.64%) +9.71 (67.70%) +3.47 (17.36%) +5.19 (36.18%) +3.68 (17.84%)

pierrot D1 +2.38 (12.63%) +7.99 (57.98%) +0.38 (2.44%) +8.93 (143.63%) +1.47 (9.86%)
D2 +3.09 (15.08%) +7.66 (55.20%) +1.34 (6.37%) +4.79 (35.61%) +1.68 (7.96%)

julius D1 +3.23 (15.17%) +8.78 (53.91%) +1.19 (8.92%) +4.79 (64.72%) +1.02 (7.37%)
D2 +3.36 (14.56%) +7.72 (47.57%) +0.84 (4.63%) +0.58 (3.84%) +0.38 (1.95%)

pig D1 +3.37 (15.33%) +8.98 (52.57%) +1.54 (11.59%) +3.99 (44.21%) +1.62 (11.77%)
D2 +4.93 (20.92%) +9.43 (55.21%) +2.55 (14.09%) +0.59 (3.60%) +2.26 (12.25%)

nicolo D1 +3.20 (14.93%) +9.01 (55.46%) +1.19 (8.82%) +4.50 (54.85%) +0.93 (6.55%)
D2 +4.12 (17.71%) +8.69 (53.74%) +1.67 (9.13%) +0.53 (3.35%) +0.40 (2.02%)

eros D1 +2.66 (12.89%) +8.17 (52.31%) +0.87 (5.86%) +6.21 (86.87%) +1.15 (7.64%)
D2 +2.52 (11.47%) +7.05 (45.25%) +0.70 (3.54%) +2.33 (15.78%) +0.85 (4.17%)

boy01 D1 +4.44 (19.22%) +9.75 (52.51%) +2.31 (19.98%) +0.65 (6.00%) +0.99 (7.93%)
D2 +5.28 (21.45%) +9.34 (49.89%) +2.88 (18.54%) -2.35 (14.13%) +1.67 (10.44%)

kitten D1 +3.05 (14.40%) +8.65 (54.10%) +0.92 (6.06%) +5.45 (62.77%) +1.22 (7.89%)
D2 +3.65 (15.78%) +8.06 (49.90%) +1.06 (5.30%) +1.15 (6.86%) +0.94 (4.46%)

big_girl D1 +4.34 (18.79%) +9.81 (53.52%) +2.23 (18.62%) +0.66 (5.84%) +1.04 (8.09%)
D2 +5.20 (21.07%) +9.44 (51.59%) +2.86 (17.97%) -1.99 (11.64%) +1.68 (10.12%)

star D1 +3.27 (16.15%) +11.30 (88.85%) +1.00 (7.04%) +6.75 (88.41%) +1.72 (12.04%)
D2 +4.90 (21.54%) +11.45 (89.79%) +2.13 (11.16%) +3.24 (22.09%) +2.15 (10.81%)

mean D1 +3.45 (16.36%) +9.34 (59.52%) +1.44 (10.48%) +5.21 (64.70%) +1.63 (11.55%)
D2 +4.43 (19.43%) +9.06 (57.63%) +2.11 (11.48%) +1.57 (10.07%) +1.96 (10.15%)

3.5.2 Quantization constraint. Quantization constraint is used to
manage the codebook and help learn an appropriate encoding strat-
egy. According to the encoding process mentioned in Sec. 3.3, we
should ensure the local structural representation are as close as
possible to items of the codebook. Besides, as we use weighted re-
sults of Nk neighbors to approximate the nearest neighbor and train

the variables in the codebook, we should constrain the distribution
of weights to approximate the nearest neighbor for more efficient
training, which can be achieved by reducing the hyper-parameter
δk in Eq. 5. In consideration of all these constraints, the quantization
constraint can be defined as:

LQC = ∥Fc − Fd ∥2 + ∥δk ∥2, (9)

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

3QNet: 3D Point Cloud GeometryQuantization Compression Network • 187:9

3.5.3 Expansion constraint. In Progressive Decompression, high-
resolution models gradually grow from the low-resolution points in
an expansion process of each decompression module as shown in
Fig. 6. We constrain the expansion distances between different reso-
lution models to avoid large deviation from low-resolution shapes.
The expansion constraint can be defined as:

LEC =
1

|Sl−1d |

∑
x ∈S l−1d ,f :S ld→S l−1d

∥x − f −1(x)∥2, (10)

where the f −1(·) means to find the corresponding center points of
decompressed points. Sl−1d and Sld are the point sets in level l − 1
and l of decompression module as shown in Fig. 6.

3.5.4 Overall loss function. The final training loss is defined as:

Lall = LMS + λ1LQC + λ2LEC , (11)

where we set λ1 and λ1 as both 0.01 in this work.

4 EXPERIMENTS

4.1 Dataset and Implementation Details
To present a comprehensive evaluation, we conduct comparisons on
3 kinds of commonly used data including point cloud object mod-
els [Kopecki et al. 2011] following [Yu et al. 2018], indoor scenes [Dai
et al. 2017a], outdoor scans [Behley et al. 2019] to evaluate the
general performances for point clouds with different spatial dis-
tributions. We train our network on 12288 sparse models from 16
categories in ShapeNet dataset [Wu et al. 2015] containing 2048
points randomly sampled from the corresponding mesh models fol-
lowing [Yang et al. 2018]. This work is implemented with Tensorflow.
The networks are optimized with Adam optimizer with a learning
rate of 2e-4, where it may take about 200 epochs to converge to
the final result. More details can be found in the supplement. In
this work, we adopt the non-learning-based PCL [Rusu and Cousins
2011], Draco [Galligan et al. 2018], and G-PCC [Graziosi et al. 2020]
as well as the learning-based PCGCv2 [Wang et al. 2021a] and
GeoCNN [Quach et al. 2020] for comparison. Note that we do not
introduce any extra fine-tuning on new datasets before evaluation.

4.2 Metrics
In this section, we describe the metrics adopted to evaluate the
performances of our compression algorithm. Following the former
related works [Quach et al. 2020; Wang et al. 2021a,b], we adopt bits
per point (bpp) to evaluate the bit rate after compression and Peak
Signal-to-Noise (PSNR) to measure the reconstruction performance
after decompression. The bpp is defined as the average length of
encoding bits taken by each point, which is:

bpp =
L

N
, (12)

where L is the size of compressed binary and N is the number of
points in the compressed point cloud.
Motivated by [Tian et al. 2017], in this work, PSNR is defined as:

PSNR = 10loд10(
maxx ∈S1 ∥x − x̂ ∥2

Dis(S1, S2)
), (13)

where S1 and S2 are the ground truths and decompressed point
clouds, respectively. x̂ denotes the nearest neighbor of x in S1.

Dis(S1, S2) is the two-way average distance between S1 and S2. There
are two kinds of distance measurements. One calculates the point-
to-point error, the other computes the point-to-plane error. The
PSNRs calculated by point-to-point and point-to-plane distances
are denoted as PSNRD1 and PSNRD2 , respectively.
As decompression distortions evaluated by PSNR dynamically

change with bpp when the encoded information varies, perfor-
mances of compression methods are often evaluated by the bpp-
PSNR curves. To present an overall quantitative evaluation for the
bpp-PSNR curve, we calculate the BD-PSNR of our method com-
pared to other methods following [Bjontegaard 2001; Quach et al.
2020], which reflects the our relative improvements against other
methods. All subsequent quantitative comparisons are based on
BD-PSNR(D1) and BD-PSNR(D2) calculated with bpp-PSNRD1 and
bpp-PSNRD2 curves, respectively.

4.3 Experiments on Object Models
In this section, we compare our method with some representative
point cloud compression methods on point clouds with about 160k
uniformly sampled points from object models in Visionair repos-
itory [Kopecki et al. 2011]. BD-PSNR is used to show the perfor-
mances of 3QNet compared to other methods. The quantitative
results are presented in Table 1 and Fig. 11. We can see that our
methods can achieve obvious improvements over other methods on
BD-PSNRmetrics calculatedwith both PSNRD1 and PSNRD2 , which
confirms the effectiveness of 3QNet. To clearer find the differences
between different algorithms, we also conduct a group of qualitative
comparisons in Fig. 9. All presented results are acquired under the
basically same bpp. We can see that non-learning-based methods
PCL, G-PCC, and Draco may produce regular and obvious distor-
tions because of direct coordinates encoding by structures such as
octree, while other learning-based methods PCGCv2 and GeoCNN
also have relatively obvious surface defects like unexpected holes. By
achieving encoding with the codebook in the feature space, 3QNet
can avoid regular distortions in non-learning-based methods, while
its network designation also helps create smoother decompressed
results with fewer defects than other learning-based methods.
As training models from ShapeNet have quite different shapes

with the evaluated models like shown in Fig. 2, it confirms the 3QNet
has excellent robustness. Except the preservation of contours with
center points, the robustness may also benefit from the learned
common local representations in the codebook. By training to re-
cover shapes with the learned local representations, the codebook
can include common characteristics from diverse local shapes. As
different geometrical structures may be composed of similar local
shapes, the codebook learned from simple models may be used to
reconstruct more complex shapes.

4.4 Experiments on Indoor scenes
To give a more comprehensive evaluation of the algorithm perfor-
mance on real scene data which may have more complicated shapes
and non-uniform distributions, we conduct comparisons on indoor
scenes from Scannet [Dai et al. 2017a], which is composed of 1513
scenes with about 50k ∼ 200k points collected by RGBD cameras.

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

187:10 • Tianxin et al.

Fig. 10. The qualitative comparison on indoor scenes. All results are acquired under the compression level with about 1 bpp. Our method still creates smooth
surfaces with fewer artifacts for the indoor walls.

Table 2. Comparisons with representative compression methods on Scannet.

Non-learning Learning
Data Metrics PCL Draco G-PCC PCGCv2 GeoCNN

Group 1 D1 +3.12 (16.37%) +7.95 (54.60%) +1.16 (7.23%) +7.42 (107.70%) +1.86 (11.57%)
D2 +2.57 (13.51%) +7.40 (52.83%) +1.30 (6.10%) +4.44 (29.91%) +1.73 (8.02%)

Group 2 D1 +3.53 (18.19%) +8.27 (55.34%) +1.51 (9.94%) +7.51 (114.02%) +2.11 (13.58%)
D2 +3.45 (18.12%) +7.96 (55.14%) +1.78 (8.67%) +4.48 (30.54%) +2.23 (10.57%)

Group 3 D1 +2.78 (14.25%) +7.59 (50.19%) +0.86 (5.61%) +7.45 (115.99%) +1.26 (8.02%)
D2 +2.52 (13.19%) +7.27 (49.37%) +1.01 (4.85%) +4.46 (30.91%) +1.33 (6.24%)

Group 4 D1 +3.10 (15.21%) +7.98 (50.18%) +1.14 (7.61%) +5.82 (73.48%) +1.21 (7.78%)
D2 +2.74 (13.67%) +7.43 (47.90%) +0.98 (4.84%) +2.56 (16.14%) +1.32 (6.35%)

Group 5 D1 +3.13 (15.95%) +7.96 (52.03%) +1.30 (8.42%) +7.61 (114.32%) +1.88 (11.80%)
D2 +3.09 (15.79%) +7.72 (51.46%) +1.76 (8.52%) +4.33 (28.84%) +1.98 (9.18%)

mean D1 +2.88 (21.96%) +5.66 (46.84%) +1.22 (7.89%) +7.21 (104.99%) +1.69 (10.69%)
D2 +2.71 (14.60%) +5.79 (32.66%) +1.39 (6.71%) +4.12 (27.66%) +1.73 (8.14%)

Fig. 11. The average bpp-PSNR curves on object models.

In this work, we follow [Qi et al. 2017a,b] and choose 312 scenes
to evaluate our method, which is divided into 5 groups according
to the number of points. The results evaluated on different groups
are presented in Table 2 and Fig. 12. We can see that our method
consistently achieves improvements over both non-learning and
learning-based methods. Our method can produce smoother decom-
pressed surfaces with fewer defects, as shown in Fig. 10.

Fig. 12. The average bpp-PSNR curves on indoor scenes.

4.5 Experiments on Outdoor Scenes
Kitti [Behley et al. 2019] is composed of 21351 real scans with 4.5
billion points collected by the Velodyne HDL-64 sensor. For outdoor
scans and maps, most points belong to the ground, which contains
little useful structural information and is sometimes removed in
applications such as [Kong et al. 2019]. As we are mainly concerned
about the objects above the ground such as buildings or humans,

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

3QNet: 3D Point Cloud GeometryQuantization Compression Network • 187:11

Fig. 13. The qualitative comparison on outdoor scenes. The two rows above and two lines below demonstrate a real scan before and after removing the ground
with RANSAC, respectively. All results are acquired under the compression level with about 1 bpp. Our method can preserve some shape characteristics even
without any requirements for outdoor training data.

we remove the ground with RANSAC [Derpanis 2010; Fischler and
Bolles 1981] and evaluate distortions with remaining up-ground
parts like shown in Fig. 14.

Fig. 14. An example of removing the ground with RANSAC. Most points
under ground are removed to evaluate the distortions of above ground
structures such as the wall, human and tree.

In this work, we use sequences 00, 02, 04, 06 from Kitti to con-
struct 4 groups of test data by uniformly selecting 20 scans from
each sequence. The results are presented in Table 3 and Fig. 15.
The qualitative results are presented in Fig. 13. We can see that
non-learning-based algorithms still have regular distortions, while
learning-based methods may create over-smoothed results to lose
some details. They may also lose some details close to the ground
as circled parts, while our method can preserve these details well.

4.6 Ablation Study
In this section, we conduct the ablation study for proposed compo-
nents. All performances are evaluated with the BD-PSNR(D1) and
BD-PSNR(D2) against GeoCNN based on the models from Visionair
repository [Kopecki et al. 2011] as mentioned in Sec. 4.3.

Fig. 15. The average bpp-PSNR curves on outdoor scans of Kitti.

4.6.1 Ablation study for the fix and completion modules. Fix module
introduces global structural information to local representations in
Hierarchical Compression, while completion module is adopted to
make up information loss from encoding and decoding in Progress
Decompression. To further confirm the effection of fix and comple-
tion modules, we compare the model performances with or without
these modules. The results are presented in Table 4. We can see that
both fix and completion module contribute to the final results.

4.6.2 Ablation study for the Decompression Module. Decompres-
sion module is an essential network in Progress Decompression to
expand decoded local representations and center points to higher
resolutions. In this section, we compare our decompression module
with the commonly used expansion operations achieved by fully
connected network [Achlioptas et al. 2018] and FoldingNet [Yang
et al. 2018] to validate its effectiveness. The results are presented
in Table 5. We can see the decompression module gets much better
performances in our framework.

4.6.3 Ablation study for the loss function. In this section, we con-
duct an ablation study for both the basic organization and each
component in the loss function. The results are presented in Table 6.

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

187:12 • Tianxin et al.

Table 3. Comparisons with representative compression methods on outdoor scans.

Non-learning Learning
Data Metrics PCL Draco G-PCC PCGCv2 GeoCNN

Group 1 D1 +5.98 (22.00%) +8.36 (33.77%) +8.27 (33.26%) +2.48 (8.45%) +4.62 (16.20%)
D2 +6.44 (19.10%) +9.24 (29.83%) +9.64 (31.60%) +3.01 (8.43%) +4.80 (13.58%)

Group 2 D1 +9.75 (39.08%) +11.49 (52.33%) +6.49 (25.29%) +8.13 (32.85%) +6.23 (22.91%)
D2 +10.74 (34.17%) +11.73 (40.11%) +7.55 (23.51%) +7.22 (21.95%) +6.19 (17.87%)

Group 3 D1 +1.51 (5.42%) +2.35 (8.88%) +0.06 (0.20%) -0.02 (0.06%) +1.18 (4.27%)
D2 +1.84 (5.17%) +2.52 (7.34%) +1.00 (2.77%) -0.72 (1.94%) +1.58 (4.50%)

Group 4 D1 +5.83 (23.34%) +9.34 (40.80%) +14.91 (91.47%) +4.53 (17.90%) +4.61 (16.79%)
D2 +5.88 (18.78%) +8.75 (28.78%) +12.90 (50.99%) +3.43 (10.28%) +4.63 (13.51%)

mean D1 +5.57 (21.21%) +7.90 (32.88%) +3.97 (14.62%) +3.39 (12.44%) +4.03 (14.55%)
D2 +6.08 (18.41%) +8.16 (26.11%) +4.81 (14.25%) +2.76 (7.86%) +4.31 (12.35%)

Table 4. Ablation study for the fix and completion modules. Fix and Com
denote the fix and completion modules, respectively, while w/o and w/ mean
to remove or preserve modules.

Metrics BD-PSNR(D1) BD-PSNR(D2)
w/o Com +1.16 (8.18%) +0.46 (2.39%)

w/o Fix&Com +0.33 (2.32%) -0.47 (-2.45%)
Ours +1.63 (11.55%) +1.96 (10.15%)

Table 5. Ablation study for the decompression module.

Metrics BD-PSNR(D1) BD-PSNR(D2)
FC -0.52 (-3.7%) -1.31 (6.79%)

Folding -3.05 (-21.53%) -5.61 (29.04%)
Ours +1.63 (11.55%) +1.96 (10.15%)

Our loss outperforms all basic constraints like CD or EMD, while
removing any of its components will reduce the final performance.
It means each component of the loss contributes to the results.

Table 6. Ablation study for the loss function. CD and EMDdenotes using CD
or EMD constraints to train the networks. Augmeans the data augmentation
operation during training. LEC and LQC are expansion constraint and
quantization constraint, respectively.

Metrics BD-PSNR(D1) BD-PSNR(D2)
CD +0.33 (2.30%) +1.24 (6.44%)
EMD -0.38 (2.70%) -0.56 (2.90%)

w/o Aug +0.76 (5.40%) +1.12 (10.98%)
w/o Aug, LEC +0.61 (4.34%) +1.92 (9.96%)

w/o Aug, LEC , LQC +0.59 (4.16%) +1.72 (8.90%)
Ours +1.63 (11.55%) +1.96 (10.15%)

4.6.4 Ablation Study for Model Breaking Strategy. TheModel Break-
ing Strategy (MBS) is adopted to break dense models into small
patches. As MBS divides original models by their distances toward
clustering centers, we conduct a comparison of MBS under different
clustering strategies in this section. The results are presented in
Table 7. Though Random and Cmeans have lower time costs than
Kmeans adopted, they also perform worse. In contrast, Gaussian
clustering has a little better performance than Kmeans, while it
costs hundreds times higher consumption. Considering both perfor-
mances and costs, we use MBS based on Kmeans.

Table 7. Ablation Study for Model Breaking Strategy. Random means ran-
dom sampling, while Cmeans, Gaussian and Kmeans denote Cmeans fuzzy
clustering, Gaussian clustering and Kmeans clustering, respectively.

Metrics BD-PSNR(D1) BD-PSNR(D2) Time cost(s)
Random -5.38 (38.05%) -5.17 (26.74%) 0.84
Cmeans +1.54 (10.89%) +1.61 (8.34%) 0.86
Gaussian +1.73 (12.20%) +2.09 (10.83%) 115.22
Kmeans +1.63 (11.55%) +1.96 (10.15%) 0.93

4.7 Comparison of Algorithm Cost
In this section, we compare the cost of our method with other
learning-based compression algorithms under the lowest compres-
sion levels based on a 160k points duckmodel fromVisionair [Kopecki
et al. 2011]. The results are illustrated in Table 8. Though GeoCNN
has a relatively lower memory cost by recurrently compressing
points in each block, it works much slower than other methods due
to the circulation to compress multiple blocks. Our method achieves
lowest costs during decoding, which may benefit from our decom-
pression module to generate coordinates directly. Though MBS
causes a higher time cost than PCGCv2 during the pre-processing,
our method takes relatively low cost during the network-based
encoding. Besides, we also believe our method can be further accel-
erated by migrating it to C-based programs.

Table 8. Algorithm cost comparison. All time and memory costs are mea-
sured on a GTX 1080ti with a i7-6700 CPU. The "Pre/Time" denotes time
costs of pre-processing and encoding processes, respectively.

Encode Decode
Metrics Pre/Time(s) Memory(MB) Time(s) Memory(MB)
PCGCv2 0.52/0.42 821 0.43 1963
GeoCNN - / 196 430 127.91 428
Ours 0.93/0.41 647 0.21 423

5 CONCLUSION
In this work, we propose a novel point-based point cloud compres-
sion framework named 3QNet. Point Clouds are broken into multi-
ple patches for parallel processing, while each patch is separately
compressed and encoded with a learned codebook in Hierarchical
Compression. The encoded features are then used to reconstruct
point clouds with Progress Decompression. 3QNet avoids the pre-
cision loss in voxel-based compression networks and can be used

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

3QNet: 3D Point Cloud GeometryQuantization Compression Network • 187:13

on dense points. With the quantization operation in the feature
space and the direct generation of coordinates in the decompression
period, 3QNet produces smoother decompressed results with higher
decompression efficiency. Besides, 3QNet can flexibly change the
compression level by operating the network level and the number
of partitioned patches in MBS after training instead of optimizing a
separate network for each compression level. According to the ex-
periments on objects, indoor and outdoor scenes, 3QNet can achieve
good performances for point clouds with different spatial distribu-
tions after training on sparse models without further fine-tuning.

ACKNOWLEDGMENTS
Thanks for the excellent works of the chair, editors, reviewers, and
authors. This work is supported by the Key Research and Develop-
ment Project of Zhejiang Province under Grant 2021C01035.

REFERENCES
Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. 2018. Learn-

ing representations and generative models for 3d point clouds. In International
conference on machine learning. PMLR, 40–49.

Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stach-
niss, and Jurgen Gall. 2019. Semantickitti: A dataset for semantic scene understand-
ing of lidar sequences. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 9297–9307.

Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang, and Raquel Urtasun. 2020.
Muscle: Multi sweep compression of lidar using deep entropy models. Advances in
Neural Information Processing Systems 33 (2020), 22170–22181.

Gisle Bjontegaard. 2001. Calculation of average PSNR differences between RD-curves.
VCEG-M33 (2001).

Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José
Neira, Ian Reid, and John J Leonard. 2016. Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age. IEEE Transactions on
robotics 32, 6 (2016), 1309–1332.

Chao Cao, Marius Preda, and Titus Zaharia. 2019. 3D point cloud compression: A
survey. In The 24th International Conference on 3D Web Technology. 1–9.

Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and
Matthias Nießner. 2017a. Scannet: Richly-annotated 3d reconstructions of indoor
scenes. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 5828–5839.

Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. 2017b. Shape completion
using 3d-encoder-predictor cnns and shape synthesis. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 5868–5877.

Konstantinos G Derpanis. 2010. Overview of the RANSAC Algorithm. Image Rochester
NY 4, 1 (2010), 2–3.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. 2017. A point set generation network for
3d object reconstruction from a single image. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 605–613.

Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Commun. ACM 24, 6 (1981), 381–395.

Frank Galligan, Michael Hemmer, Ondrej Stava, Fan Zhang, and Jamieson Brettle. 2018.
Google/Draco: a library for compressing and decompressing 3D geometric meshes
and point clouds.

D Graziosi, O Nakagami, S Kuma, A Zaghetto, T Suzuki, and A Tabatabai. 2020. An
overview of ongoing point cloud compression standardization activities: Video-
based (V-PCC) and geometry-based (G-PCC). APSIPA Transactions on Signal and
Information Processing 9 (2020).

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Implicit
geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020).

Yun He, Xinlin Ren, Danhang Tang, Yinda Zhang, Xiangyang Xue, and Yanwei Fu. 2022.
Density-preserving Deep Point Cloud Compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and Raquel Urtasun. 2020. Oct-
squeeze: Octree-structured entropy model for lidar compression. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 1313–1323.

Tianxin Huang and Yong Liu. 2019. 3d point cloud geometry compression on deep
learning. In Proceedings of the 27th ACM international conference on multimedia.
890–898.

Xin Kong, Guangyao Zhai, Baoquan Zhong, and Yong Liu. 2019. Pass3d: Precise and
accelerated semantic segmentation for 3d point cloud. In 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 3467–3473.
Andreas Kopecki, Uwe WOSSNER, Dimitris Mavrikios, Loukas Rentzos, Christian

Weidig, Lionel Roucoules, Okung-Dike Ntofon, Martin Reed, Georges Dumont,
Daniel BUNDGENS, et al. 2011. Visionair vision advanced infrastructure for research.
(2011).

Shitong Luo and Wei Hu. 2021. Diffusion probabilistic models for 3d point cloud
generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2837–2845.

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, and Pierre Duhamel. 2021.
Learning-based lossless compression of 3d point cloud geometry. In ICASSP 2021-
2021 IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP).
IEEE, 4220–4224.

En Yen Puang, Hao Zhang, Hongyuan Zhu, and Wei Jing. 2022. Hierarchical Point
Cloud Encoding and Decoding With Lightweight Self-Attention Based Model. IEEE
Robotics and Automation Letters 7, 2 (2022), 4542–4549.

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. 2018. Frustum
pointnets for 3d object detection from rgb-d data. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 918–927.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 652–660.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems. 5099–5108.

Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux. 2020. Improved deep point
cloud geometry compression. In 2020 IEEE 22nd International Workshop on Multime-
dia Signal Processing (MMSP). IEEE, 1–6.

Zizheng Que, Guo Lu, and Dong Xu. 2021. Voxelcontext-net: An octree based framework
for point cloud compression. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 6042–6051.

Jarek Rossignac. 1999. Edgebreaker: Connectivity compression for triangle meshes.
IEEE transactions on visualization and computer graphics 5, 1 (1999), 47–61.

Radu Bogdan Rusu and Steve Cousins. 2011. 3d is here: Point cloud library (pcl). In
2011 IEEE international conference on robotics and automation. IEEE, 1–4.

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. 2019. Pointrcnn: 3d object proposal
generation and detection from point cloud. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 770–779.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2017. Octree generating
networks: Efficient convolutional architectures for high-resolution 3d outputs. In
Proceedings of the IEEE international conference on computer vision. 2088–2096.

Gabriel Taubin and Jarek Rossignac. 1998. Geometric compression through topological
surgery. ACM Transactions on Graphics (TOG) 17, 2 (1998), 84–115.

Dorina Thanou, Philip A Chou, and Pascal Frossard. 2016. Graph-based compression
of dynamic 3D point cloud sequences. IEEE Transactions on Image Processing 25, 4
(2016), 1765–1778.

Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony Vetro. 2017.
Geometric distortion metrics for point cloud compression. In 2017 IEEE International
Conference on Image Processing (ICIP). IEEE, 3460–3464.

Costa Touma and Craig Gotsman. 1998. Triangle mesh compression. In Proceedings-
Graphics Interface. Canadian Information Processing Society, 26–34.

Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma. 2021a. Multiscale point cloud
geometry compression. In 2021 Data Compression Conference (DCC). IEEE, 73–82.

JianqiangWang, Hao Zhu, Haojie Liu, and Zhan Ma. 2021b. Lossy point cloud geometry
compression via end-to-end learning. IEEE Transactions on Circuits and Systems for
Video Technology 31, 12 (2021), 4909–4923.

Xuanzheng Wen, Xu Wang, Junhui Hou, Lin Ma, Yu Zhou, and Jianmin Jiang. 2020.
Lossy geometry compression of 3d point cloud data via an adaptive octree-guided
network. In 2020 IEEE International Conference on Multimedia and Expo (ICME). IEEE,
1–6.

Louis Wiesmann, Andres Milioto, Xieyuanli Chen, Cyrill Stachniss, and Jens Behley.
2021. Deep compression for dense point cloud maps. IEEE Robotics and Automation
Letters 6, 2 (2021), 2060–2067.

Ian H Witten, Radford M Neal, and John G Cleary. 1987. Arithmetic coding for data
compression. Commun. ACM 30, 6 (1987), 520–540.

ZhirongWu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1912–1920.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. 2018. Foldingnet: Point cloud
auto-encoder via deep grid deformation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 206–215.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. 2018.
Pu-net: Point cloud upsampling network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2790–2799.

ACM Trans. Graph., Vol. 37, No. 4, Article 187. Publication date: August 2022.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Non-learning-based Geometry Compression
	2.2 Learning-based Geometry Compression

	3 Methodology
	3.1 Model Breaking Strategy
	3.2 Compression and Decompression Networks
	3.3 Encoding and Decoding
	3.4 Compression Level Selection
	3.5 Loss Function

	4 Experiments
	4.1 Dataset and Implementation Details
	4.2 Metrics
	4.3 Experiments on Object Models
	4.4 Experiments on Indoor scenes
	4.5 Experiments on Outdoor Scenes
	4.6 Ablation Study
	4.7 Comparison of Algorithm Cost

	5 Conclusion
	Acknowledgments
	References

