
1

Adaptive Recurrent Forward Network for Dense
Point Cloud Completion

Tianxin Huang, Hao Zou, Jinhao Cui, Jiangning Zhang, Xuemeng Yang, Lin Li and Yong Liu*

Abstract—Point cloud completion is an interesting and chal-
lenging task in 3D vision, which aims to recover complete shapes
from sparse and incomplete point clouds. Existing completion
networks often require a vast number of parameters and sub-
stantial computational costs to achieve a high performance level,
which may limit their practical application. In this work, we
propose a novel Adaptive efficient Recurrent Forward Network
(ARFNet), which is composed of three parts: Recurrent Feature
Extraction (RFE), Forward Dense Completion (FDC) and Raw
Shape Protection (RSP). In an RFE, multiple short global features
are extracted from incomplete point clouds, while a dense quan-
tity of completed results are generated in a coarse-to-fine pipeline
in the FDC. Finally, we propose the Adamerge module to preserve
the details from the original models by merging the generated
results with the original incomplete point clouds in the RSP. In
addition, we introduce the Sampling Chamfer Distance to better
capture the shapes of the models and the balanced expansion
constraint to restrict the expansion distances from coarse to
fine. According to the experiments on ShapeNet and KITTI, our
network can achieve state-of-the-art completion performances on
dense point clouds with fewer parameters, smaller model sizes,
lower memory costs and a faster convergence.

Index Terms—3D point clouds, recurrent structure, highly
efficient completion.

I. INTRODUCTION

With the rapid development of real-time 3D sensors such
as LiDAR and depth cameras, 3D data have attracted in-
creasing attention in the computer vision and robotics fields.
As an appropriate representation for 3D spatial positions,
3D point clouds have been widely used in applications such
as SLAM [1] and object detection [2], [3], [4]. However,
point clouds acquired from sensors are often incomplete and
sparse due to their resolution and occlusion limitations. As
a consequence, recovering complete and dense models from
incomplete inputs has been an important and challenging task,
known as point cloud completion. An appropriate completion
can improve the perception performances on downstream tasks
such as object detection [5], [6], tracking [7] and scene
understanding [8], [9].

Since the work of PCN [10], many deep learning-based
methods have been proposed for the 3D point cloud comple-
tion task. Some of them are based on 3D grids and 3D convo-
lutional neural networks (CNNs), such as GRNet [11], while
others are built based on PointNet [12] and PointNet++ [13],
such as TopNet [14] and SANet [15]. These networks are

The authors are with the Institute of Cyber-System and Control, Zhejiang
University, Hangzhou, 310058 China e-mail: yongliu@iipc.zju.edu.cn. The
corresponding author, Yong Liu, is with the Institute of Cyber-System and
Control at Zhejiang University and Huzhou Institute of Zhejiang University.
The code will be available at https://github.com/Tianxinhuang/ARFNet.git.

Fig. 1. Comparison of U-Net (left) and our framework (right). U-Net is based
on multiresolution local features, while our framework works on multilevel
short global features and considers intermediate coarse completion results for
feature extraction to achieve comparable performances with relatively low
computational costs.

based on high-dimensional global features or multiple local
features to acquire enough shape information from the inputs.
Most of them have numerous parameters and use a large
amount of memory to achieve good performance. To overcome
these problems, we propose a novel well-performing recurrent
forward point cloud completion framework that shares param-
eters in layers and extracts multiple short global features to
greatly reduce the parameters and memory cost. In addition,
most of the above works pay little attention to preserving the
details of the original incomplete point clouds, which will
cause a distortion of the outputs. Large distortions will lead to
meaningless completion results. In these cases, we merge the
original shapes from the incomplete models with the outputs
of different resolutions to prevent our completion results from
having large distortions.

In this paper, we propose a novel Adaptive Recurrent For-
ward Network (ARFNet). As shown in Fig. 1, it is organized
in a “forward” framework, different from a “backward” frame-
work, such as U-Net [16], which has been proven to work well
on segmentation [17], [18] and point cloud completion [15].
However, U-Net is computationally expensive in searching
and aggregating the local features of different resolutions,
especially for dense point clouds. In addition, the intermediate
coarse completed point clouds are not well considered because
the features are only extracted from the incomplete model.
In our framework, the operations are organized into multiple
recurrent levels. Modules are parameter-shared to reduce the
parameters and model size, and we only extract multiple short
global features in different recurrent levels to decrease the
computational cost. ARFNet is composed of three parts: Re-
current Feature Extraction (RFE), Forward Dense Completion

2

(FDC) and Raw Shape Protection (RSP). The output model
from the former level is concatenated with the incomplete
model and fed to the latter level as a “partial incomplete
model”. In RFE, we design an Encode Cell and Recover Cell
to extract features for the different recurrent levels from an
intermediate “partial incomplete model”. In FDC, we propose
an initial cell to create an initial sparse model, which is lifted to
higher resolutions with Decode cells. A larger lifting ratio than
most previous methods [19], [20] is adopted for the Decode
cell to generate dense point clouds with fewer recurrent levels.
We share the parameters of the Encode cells and Decode
Cells to reduce the parameters and abstract a generic pattern
between the different resolutions. Finally, we introduce the
Adamerge module to preserve the details in the original
incomplete models by driving the generated completion results
from the FDC toward their nearest neighbors in the original
point clouds in RSP. The Adamerge module adopts a small
network to predict a driving distance for each generated point.
To better capture the shapes and improve the uniformity of the
results, we apply a Chamfer Distance in the randomly divided
subsets of the dense point clouds, called a Sampling Chamfer
Distance. In addition, we improve the generation continuity in
the FDC by constraining the expansion distances by balancing
them with their estimated expectation.

Our research contributions can be summarized as follows:
• We propose a novel recurrent forward point cloud com-

pletion network by cyclically completing models with
features from coarse completed results;

• We propose an Adamerge module to adaptively preserve
the original shapes in a learnable way;

• We propose the Sampling Chamfer Distance to better
capture the shape differences between the models and the
balanced expansion constraint to restrict the expansion
distances from coarse to fine;

• The experiments on ShapeNet and KITTI demonstrate
that our network outperforms the existing methods on the
3D completion task. In addition to the improvements in
completion performance, the model size and parameters
are greatly reduced due to this structure.

II. RELATED WORK

Point Cloud Learning. Early works [21], [22], [23] usually
applied 3D CNNs based on voxel representations of 3D point
clouds. However, the 3D voxels cannot be directly acquired.
Converting point clouds to voxels is expensive, which leads
to quantization errors, which are caused by ignoring some of
the details of the original data. Although some works [24],
[25] process 3D shapes through corresponding multiview
images, projections from 3D models to images may take extra
computation resources and lose structural information. Qi et
al. first introduced a point-based point cloud learning network
named PointNet [12]. It processes point clouds directly with
multilayer perceptrons (MLPs) and aggregates the features
with symmetric functions. PointNet++ [13] captures local
features by recurrently applying PointNet in the local regions
acquired by ball queries around the sampled points. Many
works have been proposed based on PointNet and PointNet++

such as point cloud analysis [26], [27], [28], [29], [30],
semantic segmentation [31], [32], reconstruction [33], [34],
[35] and compression [36], [37] or upsampling [38], [39].
The latter works [40], [41], [42] enhance the performances
of learned point cloud representations by introducing graph
convolutions, while some methods, such as PointConv [43]
and KPconv [44], use MLPs to assign different weights for
the points according to their coordinates and design specific
convolution methods.

Point Cloud Completion. Early works [21], [22] con-
centrated on voxel-based model completions with 3D convo-
lutions. However, voxel-based models incur inevitable quan-
tization errors from the collected point clouds, which limit
their further application. PCN [10] is the first point-based
model for point cloud completion. It generates a complete
model in a two-stage process that first generates a coarse
result by a fully connected network and refines it to a higher
resolution with a folding-based network. PFNet [45] completes
models by generating the missing parts with the proposed
point pyramid decoder (PPD), which is interesting but may
have difficulty in generating missing regions with unknown
point numbers. TopNet [14] explores the hierarchical rooted
tree structure as a decoder to generate an arbitrary grouping of
points in the completion task. SANet [15] adopts a commonly
used U-Net structure with a skip-connection and self-attention
modules to complete the missing features. It performs well on
datasets with sparse points. The cascaded refinement network
(CRN) [19] adds a cascaded refinement module to achieve
a transformation from coarse to fine by multiple lifting with
a small upsampling ratio. A mirroring operation on the xy-
plane and downsampling are used to initialize the coarse
outputs and introduce a shape prior. CRN performs better than
PCN and TopNet on ShapeNet [46], while it requires shape
priors to complete the models. The morphing and sampling
network (MSN) [47] improves the completion performance by
assembling incomplete models with outputs through minimum
density sampling. It also proposes an approximation for the
Earth Mover Distance to train the network. GRNet [11] and
NSFA [20] achieve completion with quite different ideas.
GRNet transforms the incomplete models into 3D grid rep-
resentations and adopts a 3D CNN to learn the features and
to complete the models. NSFA treats point cloud completion
as upsampling. The hierarchical feature learning architecture
in PU-Net [38] is adopted to extract the local features. Local
features of different resolutions are used to construct the points
of the preserving or missing parts. CON [48] and IFNet [49]
are two common surface completion methods that concentrate
on completing full surfaces from the point clouds with little
shape loss and relatively complete overall shapes, while point
cloud completion focuses on completing shapes from the point
clouds with large occlusions and incomplete overall shapes. In
addition, the outputs of CON and IFNet are actually surfaces
instead of point coordinates, which makes them distinct from
the point cloud completion methods.

III. METHODOLOGY

The goal of our work is the completion of incomplete point
clouds to dense shapes with fewer parameters and less cost.

3

Fig. 2. Structure of ARFNet. It is organized into three recurrent levels, which can also be divided into three parts: RFE, FDC and RSP. The output from the
former level is concatenated with the incomplete model and fed to the latter level as an intermediate “partial completed model”.

As indicated in Fig. 2, the structure is organized into multiple
recurrent levels. The output model from the former level is
concatenated with the incomplete model and fed to the latter
level as a “partial incomplete model”. The whole network is
composed of three parts, that include the Recurrent Feature
Extraction (RFE), Forward Dense Completion (FDC) and
Raw Shape Protection (RSP). The RFE extracts features for
completion in different recurrent levels, while the FDC creates
models of different resolutions based on the output features.
Subsequently, shape details from the incomplete model are
added to the model by RSP. The output of the last recurrent
level is taken as the final output.

A. Recurrent Feature Extraction
In the Recurrent Feature Extraction module (RFE), we

propose the Encode Cell and Recover Cell to extract the
global features for subsequent completion operations. An
Encode cell extracts the initial features for completion, and
the state features for the Encode cell in the next recurrent
level. The Recover Cells recover the initial features by further
aggregating the information from the incomplete models and
return the final features for the FDC. The designations of the
Encode Cell and Recover Cell are presented in Fig. 3.

Fig. 3. (a) and (b) denote the structures of the Encode Cell and Recover Cell,
respectively. P and Fi are the input point set and input state feature, while
Fs and Fr are the state feature for the next level and the recovered feature
that generates the completion results. Fe is the initial feature extracted by the
Encode Cell.

Encode Cell. We design the Encode cell to extract an initial
feature Fe from the input points, which is parameter-shared
between the different levels to reduce the parameters. State

4

Fig. 4. Structure of the Initialize Cell. P and Fi are the input partial point
clouds and the extracted feature from RFE, respectively. Ps is sampled from
P , which is adjusted and combined into the initialized completed points Po

with generated results from Fi. Fo includes state features for Po.

features Fs are extracted to record the current recurrent level
and help the Encode cell adaptively focus on different regions
of the input point clouds. In an Encode cell, the state features
acquired from the former Encode cell are concatenated with
points and fed into MLPs to produce the state features Fs for
the next Encode cell and the output features Fe for completion.

Recover Cell. The features Fe directly extracted by the
Encode Cells are not sufficient for completion due to the lack
of information in the original model. Under this condition,
Recover Cells are adopted to further aggregate the information
from the incomplete model to complete the features extracted
by the Encode Cells. In a Recover Cell, input features Fe from
the Encode Cell are concatenated with the input points again
and fed to the MLPs to obtain the recovered features Fr.

B. Forward Dense Completion

Forward Dense Completion (FDC) includes an Initialize
Cell and Decode cells, which generate completed point clouds
based on the extracted features from the RFE. The Initialize
Cell generates an initial model in the first level, while Decode
cells lift the model to higher resolutions in later levels.

Initialize Cell. We design the Initialize Cell to create a
basic structure of the completion result. Generating points
directly by a fully connected network or FoldingNet [50]
may be a commonly used alternative. It is flexible but greatly
limited by the effectiveness of a network, it has difficulty in
constructing complex shapes. The structure of the Initialize
Cell is presented in Fig. 4. To acquire more accurate basic
shapes, we introduce the contour of the original incomplete
model by adding sampled points from the incomplete model.
Half of the contour points Po are acquired from the sampled
points Ps, and the others are directly generated with networks.
Direct sampling seeds may be not stable enough to provide
complete contours. Therefore, we introduce input features Fi
to predict the offsets for each sampled point in Ps by the
MLPs to refine their positions. Contour points produced from
the sampled points are restricted by the shape of the original
incomplete model, which means that other points need to be
generated to fill up missing parts. The fully connected network
has a satisfactory performance, generating missing parts not
covered by the incomplete model. In this work, we fuse the
outputs grown from the sampled points and fully connected

Fig. 5. Structure of the Decode cell. Input points P and state features S are
lifted to K times larger output points Po and state features So based on the
guidance of the extracted feature Fi.

networks to produce an initial completed contour Po. State
features Fo are generated with fully connected networks to
hold the structural information in the current recurrent level.

Decode cell. A Decode cell is designed to learn a parameter-
shared transformation from lower resolution completion results
P to K times larger Po, as shown in Fig. 5, which is achieved
by predicting K offsets for each point from the last level. As
we use multiple parameter-shared Decode cells in the whole
pipeline, as shown in Fig. 2, we need the state features to
record the state and level of the current Decode cell. Input
features Fi extracted from the Encode and Recover Cell are
adopted to introduce the information from the original point
clouds. K parameter-separate MLPs are used for the prediction
of the output state features So, while a fully connected network
is adopted to predict the offsets for output points Po. K is set
as 16 for this work.

C. Raw Shape Protection

Raw shape protection (RSP) is responsible for the preser-
vation of the original details, which is achieved with multiple
Adamerge modules by adaptively merging the generated com-
pletion results from the FDC with partial inputs.

Adamerge module. The Adamerge module is proposed
to introduce the details from the original partial inputs to the
completion results generated by the FDC, which works by
driving the points toward their nearest neighbors in the incom-
plete input point clouds. The driving distance is adaptively
controlled with a network. The operation of the Adamerge
module can be described as follows:

dis = min
x∈Pi,∀y∈P

‖x− y‖2, (1)

Pv = {x|min ‖x− y‖2,∀y ∈ P, x ∈ Pi} (2)

σ = f(g(Pg, Pv), Pg, Pv) (3)

Vo = e−
dis
σ (Pv − Pg) (4)

P̂ = P + Vo, (5)

5

Fig. 6. Structure of the Adamerge module. The neighbors of the generated
results Pg in the partial point clouds Pi are denoted as Pv . Pg , Pi and Pv

are used together to predict a displacement field Vo, including an offset for
each generated point in Pg with network-based operations g(·) and f(·).

σ is predicted by the networks according to the generated
results Pg and partial input Pi to adjust the displacement field
Vo. Each point in Pg will adaptively acquire a separate value
for the driving distance. The specific structure of Adamerge is
presented in Fig. 6.

D. Loss function

Basic multilevel loss. We add the losses of the different
outputs together to acquire the basic multilevel loss. There are
two commonly used loss functions to measure the differences
between two point clouds: Chamfer Distance (CD) and Earth
Mover Distance (EMD) [51]. Their basic forms are shown as
follows:

LCD(S1, S2) =
1

2
(

1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖2

+
1

|S2|
∑
x∈S2

min
y∈S1

‖x− y‖2),
(6)

LEMD(S1, S2) = min
φ:S1→S2

1

|S1|
∑
x∈S1

‖x− φ(x)‖2, (7)

where S1 and S2 are two point sets. φ is a bijection between S1

and S2. CD works mainly on the contours of the models, which
may lead to a nonuniform result. We propose the Sampling
Chamfer distance (SCD) to improve uniformity. It can be
described as

LSCD(S1, S2) =
1

N

∑
Si1∈D1,Si2∈D2

LCD(Si1, Si2), (8)

while D1 = RD(S1, N), D2 = RD(S2, N). RD(S,N)
means randomly dividing the point set S into N isometric
sets. l is defined as the number of recurrent levels with low
resolutions less than 10000 points, while h is the number of
recurrent levels. l and h are set as 2 and 3 in this work. In
our work, we apply EMD to the outputs of the first level. Due
to the high calculation cost of EMD on dense point clouds,
we use SCD and CD for our high-resolution outputs in the

second and third levels. Finally, the basic multilevel loss can
be described as

LBM =

l∑
i=1

LEMDi +

h∑
j=l

(LSCDj + LCDj). (9)

Balanced Expansion Constraint. A balanced expansion
constraint is used to prevent the points predicted by the
Decode Cells from going too far from the centers. It will
ensure a Decode cell generates continuous local shapes instead
of discrete points in the 3D space. However, constraining
distances from the centers directly is too ambiguous because
the gradient is zero only when the generated points coincide
with the corresponding centers. This will inevitably impact
the network performance. In this circumstance, we propose
the balanced expansion constraint, which can be described as

LEC =
1

|Ŝ|

∑
x∈Ŝ,f :S→Ŝ

‖x− f−1(x)‖2, (10)

E(LEC) ≈
1

|Ŝ0|

∑
x∈Ŝ0

min
y∈S0

‖x− y‖2, (11)

LBEC = ReLU(LEC − ε ∗ E(LEC)), (12)

where S and Ŝ are the inputs and outputs of the Decode
Cell, respectively, and S0 and Ŝ0 are their ground truths.
We consider that the expansion distances are related to the
differences between the two different resolution models. We
estimate the expectation of the expansion distances by Equa-
tion 11 while using it as an additional item to balance the
expansion constraint. In this way, the gradient can be zero
when the expansion distances are small enough, eliminating
the disturbance to the network. The influence of an additional
item can be adjusted by ε.

Merge range constraint. The merge range constraint is
used to restrain the search radii of Adamerge by constraining
σ in Eq. 3, section III-C. Smaller merge ranges will increase
the weights of the generated points in the completion results,
while bigger ranges increase the weights of the original partial
shapes. ξ is a parameter guided by the annealing strategy.
It will decrease gradually as the iterations increase. In this
way, the merge range is small, to pay more attention to the
generated results at the beginning of the iterations, and large,
to introduce more information from the original incomplete
models at the later period of iterations. The merge range
constraint can be formulated as

LMR = ξ ∗ ‖σ‖22. (13)

Overall loss. With a balanced expansion constraint and
a merge range constraint for each recurrent level, the overall
loss is the weighted sum of the mentioned losses as follows:

L = w1LBM + w2

n−1∑
i=1

LBECi + w3

n∑
j=1

LMRj , (14)

where n is defined as the number of recurrent levels and w1,
w2 and w3 are the weights for different constraints.

6

-

Input PCN GRNet CRNTopNet GTOursMSN

-

NSFA

-

RFNet

Fig. 7. Qualitative comparisons with state-of-the-art methods on ShapeNet. There is no result for CRN on novel category models because there is no known
shape prior feature for them.

IV. EXPERIMENTS

A. Dataset and Implementation Details

ShapeNet. ShapeNet [46] for completion contains 30974
models from 8 categories, which is provided by PCN [10].
Ground truth models contain 16384 points uniformly sampled
on surfaces of mesh models. Partial point clouds are generated
by back-projecting 2.5D depth images into 3D. For fair
comparisons, we follow same train/val/test splits as PCN [10].

KITTI. To further test our network, we evaluate it on the
real-world scans from KITTI [52]. Cars are acquired with the
ground truth object bounding boxes from each frame. The test
set includes 2401 partial point clouds labeled as cars.

Implementation details. We adopt the train split of
ShapeNet to conduct end-to-end training for ARFNet. w1, w2

and w3 are set as 1.0, 0.05 and 1.0, respectively. ξ is set as 0.01
before 20 epochs and 0.001 after, which limits the merge range
more at the beginning of the iterations to pay more attention to
the generated results, and less at the later period to introduce
more information from the original incomplete models. We
train our models using the Adam optimizer [53] with an initial
learning rate 5e−4(decayed by 0.5 every 7 epochs) and a batch
size of 32. It will converge after approximately 33 epochs.

Metrics. In our work, we adopt the Chamfer Distance (CD)
mentioned in Section III-D as a global metric for completion
performance. However, the output models may be changed
considerably and lose the details of the incomplete models
during completion while maintaining relatively small global
errors. An example is shown in Fig. 8. The CD metric of

Fig. 8. Comparisons of CD and FD multiplied by 103.

the distorted result on the left is even smaller than the well-
performing result on the right, while its fidelity error (FD) [10]
is approximately 3 times larger. In terms of this problem, we
use the FD as a supplementary evaluation for the distortions. It
is defined as the average distance from each point in the input
to its nearest neighbor in the output, which can be shown as

FD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖2, (15)

where S1 and S2 are input and output point clouds, re-
spectively. As there is no complete ground truth model for
KITTI, the FD and minimal matching distance (MMD) are
used together to evaluate the completion performance. MMD

7

TABLE I
QUANTITATIVE COMPARISONS ON KNOWN CATEGORIES OF SHAPENET WITH THE METRICS MULTIPLIED BY 103 .

Method Metric airplane cabinet car chair lamp sofa table vessel Average

FC [10] CD 5.69 11.02 8.77 10.98 11.13 11.75 9.32 9.72 9.79
FD 5.49 9.27 10.10 9.86 10.39 8.89 9.64 8.53 9.02

Folding [10] CD 5.96 10.83 9.27 11.24 12.17 11.63 9.45 10.02 10.07
FD 6.60 8.89 11.42 10.43 11.98 9.25 10.16 10.02 9.85

PCN [10] CD 5.50 10.63 8.69 10.99 11.33 11.67 8.59 9.66 9.63
FD 5.14 7.28 9.47 7.99 8.75 7.27 8.05 7.44 7.67

TopNet [14] CD 5.85 10.78 8.84 10.80 11.15 11.41 8.79 9.17 9.60
FD 7.97 12.44 10.76 13.50 13.94 12.32 12.15 10.63 11.71

MSN [47] CD 5.60 11.90 10.70 10.60 10.70 11.80 8.71 9.48 9.96
FD 3.22 6.42 6.19 4.96 3.65 6.04 5.38 4.57 5.05

CRN [19] CD 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51
FD 2.80 4.89 7.20 4.06 4.15 3.83 4.05 3.63 4.33

GRNet [11] CD 6.44 10.39 9.45 9.41 7.96 10.50 8.44 8.04 8.83
FD 3.70 6.55 7.77 5.30 4.50 4.90 5.88 3.93 5.32

NSFA [20] CD 5.22 10.51 9.00 9.33 8.26 10.74 7.78 7.66 8.55
FD 3.37 4.94 7.42 4.11 3.57 4.17 3.99 3.44 4.38

RFNet [54] CD 4.91 9.98 8.66 9.14 7.16 10.45 7.45 7.28 8.13
FD 1.98 3.49 6.96 2.83 3.02 2.95 2.86 2.75 3.35

Ours CD 4.86 10.02 8.75 9.02 6.93 10.26 7.26 7.35 8.10
FD 1.86 3.28 5.78 2.19 2.28 2.23 2.73 2.23 2.82

is defined as the minimum CD between the output and all the
car point clouds from ShapeNet. It measures how much the
completed output resembles a typical car.

B. Comparison on ShapeNet

In this section, we qualitatively and quantitatively compare
our work on ShapeNet with the state-of-the-art point cloud
completion methods. The test data include two parts: data
containing 8 known categories of models that are the same
as the training data, and data containing 8 novel categories
of models that are different from the training data. The
quantitative comparisons are presented in Table I and Table III.
The bold and underlined values are the best and second-best
values, respectively.

We can see that our RFNet achieves the best performances
on both the known and novel category models, while our pro-
posed approach, ARFNet, can further improve the completion
performances. Although CRN also performs well on known
categories of ShapeNet, it needs a mean shape prior feature
from a pretrained network for each category, which is slightly
difficult because the categories of the models cannot always
be known before completion.

In addition, our network improves considerably on FD,
which means our work can make fewer distortions during the
completion process and preserve the original shapes better than
the other methods.

To intuitively compare the completion results, we choose
some models from the test data to make the qualitative
comparison. As shown in Fig. 7, FC, Folding, PCN and
TopNet create good global shapes while losing most of the
details from the incomplete model. MSN, GRNet and CRN can
preserve the details to some extent, while they still suffer from

TABLE II
QUANTITATIVE COMPARISONS ON CAR CATEGORY OF KITTI.

Method FC Folding PCN TopNet GRNet RFNet Ours
FD 0.0331 0.0361 0.0308 0.0335 0.0192 0.0258 0.0184

MMD 0.0148 0.0146 0.0158 0.0151 0.0374 0.0146 0.0149
FD+MMD 0.0479 0.0507 0.0466 0.0486 0.0557 0.0404 0.0333

obvious distortions. Although NSFA can keep the details much
better than the other methods, its local feature aggregation
operations greatly increase the computational cost. In addition,
it may mistake some discontinuous regions as details and have
difficulty completing the models with large and concentrated
missing parts, such as the airplane wings and sofa body in
the second and fourth rows. Our work can preserve details
with fewer distortions and clearer textures, and also has low
computational costs, as discussed in Sec. IV-H. As presented
in the third row of Fig. 7, our RFNet may overfocus on the
shape defects and produce incorrect completion details. The
reason is that RFNet controls the merge range between the
generated point clouds and the partial inputs with a group of
learned parameters, which means that the merge range would
be the same for all the points and models at the inference
phase. Hence, some points might be overly merged to the
defect areas when the merge range is too large for the model.
In this work, ARFNet overcomes this problem by adaptively
predicting the different merge ranges according to the model
shapes with the use of networks, as illustrated in Section III-C.

C. Comparison on Kitti

We evaluate our network with the car category of real-world
scans from KITTI. Our network is trained on ShapeNet for
approximately 0.08 M iterations (10 epochs) in this section,

8

TABLE III
QUANTITATIVE COMPARISONS ON NOVEL CATEGORIES OF SHAPENET WITH METRICS MULTIPLIED BY 103 .

Method Metric Similiar Dissimiliar
bus bed bookshelf bench Average guitar motor skateboard pistol Average

FC [10] CD 9.82 21.23 15.12 10.81 14.20 9.92 14.56 12.00 14.97 12.90
FD 7.87 13.54 10.53 8.88 10.20 9.26 11.97 7.77 13.86 10.72

Folding [10] CD 10.58 19.08 14.88 10.55 13.80 9.06 15.56 11.91 13.13 12.40
FD 8.14 13.32 10.39 9.43 10.32 9.30 14.49 7.49 12.96 11.06

PCN [10] CD 9.46 21.63 14.79 11.02 14.20 10.40 14.75 12.04 14.23 12.90
FD 6.41 10.63 8.52 7.58 8.28 8.61 11.48 6.56 10.70 9.34

TopNet [14] CD 9.31 20.38 14.12 10.16 13.40 9.88 14.30 9.26 12.86 11.50
FD 9.93 15.37 12.69 11.08 12.27 10.11 14.52 9.63 15.42 12.42

MSN [47] CD 11.60 24.10 16.20 10.80 15.67 10.40 15.50 11.70 14.20 13.95
FD 5.40 6.27 6.45 5.00 5.78 2.40 4.39 4.00 2.87 3.42

GRNet [11] CD 11.50 22.42 14.91 11.47 15.08 8.88 11.83 11.30 13.27 11.32
FD 4.92 5.97 6.22 5.38 5.62 4.04 4.51 3.73 3.55 6.79

NSFA [20] CD 9.24 17.30 12.63 9.76 12.23 8.72 10.56 8.68 11.03 9.75
FD 3.86 4.84 4.78 3.82 4.33 3.30 3.80 2.88 3.54 3.38

RFNet [54] CD 8.98 19.20 12.91 9.79 12.72 7.59 10.88 8.66 9.74 9.22
FD 2.42 4.35 3.79 2.84 3.35 1.89 4.99 1.48 2.90 2.82

Ours CD 9.09 17.54 12.40 9.56 12.15 6.81 10.65 9.27 9.74 9.12
FD 2.09 3.25 3.28 2.49 2.78 0.78 3.53 1.29 1.98 1.88

Fig. 9. Qualitative comparisons with other methods on Kitti. We can see that our method has strong ability to recover car shapes from quite incomplete scans.

without any fine-tuning on other datasets. The quantitative
and qualitative results are presented in Table II and Fig. 9,
respectively. We can see that our network (ARFNet) achieves
the lowest FD and a comparable MMD, which can recover fine
car shapes from quite sparse and incomplete point clouds, as
illustrated in Fig. 9. Although GRNet also obtains a relatively
low FD, it also has the largest MMD on KITTI, which
means that GRNet pays more attention to reconstructing the
incomplete models instead of completing them, as shown in
Fig. 9. To make a trade-off between FD and MMD, we add
them together to conduct an overall evaluation. Our ARFNet
performs much better on the overall evaluation, which means
our work can outperform former methods to complete the
shapes while keeping more details. This confirms the great
robustness of ARFNet on unseen real scans.

D. Visualization of the Entire Working Pipeline

The max pooling operation used in an Encode Cell or
Recover Cell is actually a selection of key points that achieve
the maximum value in multiple feature dimensions. As shown
in Fig. 10, we visualize the key points selected by the Encode
cells and Recover Cell in the RFE to observe the regions
focused at each recurrence level. The coarse completion results
are concatenated with the original inputs as ”partial completed
models” for the next levels. We can see that points selected
by the Encode Cells gradually move to the missing parts as
the recurrent level increases, which proves that our network
is capable of extracting features to adaptively complete the
missing parts. In addition, the key points selected by the
Recover Cells are around those generated by the Encode Cells,
which indicates that the Recover Cell learns to aggregate

9

Fig. 10. (a) and (b) show the areas of the Encode cell and Recover Cell
in RFE, where the black points denote the selected key points. (c) generated
completion results by the Initialize Cell and Decode cell in FDC. (d) merged
completion results by the Adamerge module in RSP.

information from input point clouds based on the output
features of the Encode Cells. We can also find that the FDC
generates completion results with attractive overall contours,
while the Adamerge module introduces more accurate local
details and textures from the original incomplete models, as
illustrated by the circled regions.

E. Points Grown from Seeds in the FDC

In the FDC, an Initialize Cell generates an initial sparse
model by the combination of the fully connected network
output and refined sampled points, which is lifted to higher
resolutions with Decode cells. In this section, we visualize
the points grown from these two parts at different levels to
observe the generation process of the FDC. As demonstrated

Fig. 11. Visualization of the FDC. (a) and (b) denote points grown from the
generated and sampled points in the different levels, respectively.

in Fig. 11, points grown from sampled points form a contour
for the original incomplete parts, while points grown from the
fully connected network output fill up the missing parts of the

0% 10% 30% 50% 70%

Occlusion Ratio

10

15

20

25

30

C
ha

m
fe

rD
is

ta
nc

e

FC
Folding
PCN
TOPNet
MSN
CANet
GRNet
NSFA
RFNet
Ours

0% 10% 30% 50% 70%

Occlusion Ratio

2

4

6

8

10

12

Fi
de

lit
y

E
rr

or

Fig. 12. Quantitative comparison for the occluded point clouds under different
occlusion ratios.

models. These two parts are expanded and combined together
to make up the final output.

F. Robustness for Occlusion

In real-world applications, missing points, also known as
occlusions, may introduce extra noise to the data and harm
completion. To further study the robustness of our method
against missing points, we conduct experiments by occluding
inputs with a %p occlusion following PCN [10] and CRN [19],
as demonstrated in Fig. 12. We can see that our method
performs best both in CD and FD under multiple occlusion
ratios, which confirms that our network is more robust against
occlusions than the former methods. Our ARFNet has obvious
improvements over our RFNet, which confirms that controlling
the merge ranges adaptively can truly improve the completion
performance and robustness, as discussed in Section IV-B.

G. Discussion of the Adamerge module.

Adamerge actually works by learning to drive the points
generated by the Decode Cell to original incomplete point
clouds. It is not only a module that forces output models close
to input but also a derivable method to fuse partial and output
models. In this section, we discuss the adoption of Adamerge.

Differences between mix and Adamerge. Mix is an easy
method to merge the incomplete input and generated output
points. We conduct a comparison in Fig. 13 to observe the
different performances between the direct mix and the merge.
We can see that the direct mix operation may cover the details
in the original model, while Adamerge can preserve details by
appropriately driving output points to the input shape.

Differences between constraints and Adamerge. Adding
FD loss defined in Eq.15 to the loss function can also force the
generated points from the completion network toward the input
of incomplete point clouds. To distinguish the effects of adding
constraints and using Adamerge, we conduct a comparison in
Fig. 14. We can see that the constraint enforcing the output to
input cannot preserve the details as well as Adamerge.

Differences between postprocessing and Adamerge. To
explore the necessity of the learning-based operation, we

10

Fig. 13. Quantitative comparison between mix and Adamerge.

Fig. 14. Qualitative comparison between constraints and Adamerge.

also compare the performances between the learning-based
Adamerge and the manually controlling driving strategy in
this section. As the Adamerge module works by learning
to drive points to their nearest neighbor in the partial point
cloud, manually controlling the driving procedure seems to
be another alternative. Let N and D denote the number of
generated points and their distances to the nearest neighbors
in the partial inputs. We choose the p1 ×N points closest to
the partial input and move them p2 ×D towards their nearest
neighbors in the partial point cloud to observe the feasibility
of manual control. As shown in table IV, the horizontal and
vertical axes denote p1 and p2, respectively. The network
without a merge or any processing obtains 8.96/6.44, as shown
in the fifth row of Table VII. We can see that manually
controlling the results under multiple settings is quite inferior
to Adamerge. It demonstrates that it is difficult to manually
find exact appropriate settings, while Adamerge can avoid the
manual setting by learning the merge ranges to decide which
points need to be merged and how far they should be driven.

TABLE IV
COMPARISONS WITH POST PROCESSING ON CD/FD.

How far (p2) 0.3 0.5 0.7
How many (p1) CD/FD CD/FD CD/FD

0.3 10.74/6.00 10.62/4.57 10.63/3.38
0.5 10.42/5.68 10.24/4.07 10.29/2.70
0.7 10.29/5.58 10.21/3.89 10.52/2.45

H. Comparison of Network Efficiency

In this section, we compare the model size, memory cost,
time cost and training requirements. The time and memory
costs are evaluated on an Nvidia 2080ti GPU with a 2.9 GHz
i5-9400 CPU. As illustrated in Table V, we can see that our
network has the fewest parameters and the smallest model
size since we share the parameters between some relatively
complex modules. As presented in Table VI, our network
also has comparable time costs and the lowest memory costs.
Although GRNet is faster, it requires more than 2 times more

memory than ours. This confirms that the basic recurrent
forward structure is an effective lightweight framework. Ad-
ditional works can be further developed based on our work.

TABLE V
MODEL SIZE COMPARISON.

Method PCN TopNet MSN GRNet CRN NSFA RFNet Ours
Parameters (M) 6.85 9.96 29.00 76.77 5.14 5.60 3.82 3.43

Model Size (MB) 82.3 79.8 116.0 292.6 61.9 66.0 50.1 46.0

TABLE VI
MODEL EFFICIENCY COMPARISON.

Method Inference Training requirements
Time(ms) Memory(MB) Batch Iter (M) Memory(GB)

PCN 6.68 973 32 0.3 11
TopNet 5.09 732 32 0.23 11
MSN 20.16 1417 160 0.23 8x11

GRNet 5.92 1719 32 1.09 2x11
CRN 9.22 973 32 0.27 11
NSFA 104.80 973 8 0.67 11
RFNet 9.00 710 32 0.23 11
Ours 7.96 689 32 0.21 11

Moreover, our work has a relatively low training require-
ment. Although hardly any other work pays attention to this,
it is actually important for model applications in different
scenarios. The comparison of training requirements with sev-
eral completion networks is reported in Table VI. Note that
our network only needs 11 GB to train. It will take only
approximately 0.08 M iterations to converge to a result better
than the former networks, as discussed in Sec. IV-I,and 0.21
M iterations to the best result in 1 day, which is much faster
than the other methods.

I. Ablation Study

Effects of the proposed modules. In this section, we
evaluate the effects of different modules. The experiments
are conducted on known category models of ShapeNet by
removing the modules and retraining the network. We use
CD and FD to evaluate the completion results, as illustrated
in Table VII. Enc, SCD, BEC, Rec and Mer denote the
Encode cell, Sampling Chamfer Distance, balanced expansion
constraint, Recover Cell and Adamerge, respectively. CD*
means CD measured at 0.08 M iterations to compare the con-
vergence efficiency. We can see that the full network with all
modules works the best. Removing any component decreases
the performance, which indicates that each component makes
a contribution. Adamerge contributes the most to reducing the
error. Although other modules help relatively less, they can
improve the final performance and accelerate convergence,
which helps achieve a much smaller CD*.

Effection of parameter-shared operations. To further
confirm the rationality of the parameter-shared linkages, we
conduct an ablation study on them by adding or removing
the linkages between modules. The results are presented in
Table VIII. * and underline denote removing and adding
parameter-shared linkages between modules, respectively. We

11

TABLE VII
ABLATION STUDY FOR THE PROPOSED MODULES.

Enc SCD BEC Rec Mer CD FD CD*
X - - - - 9.35 6.86 9.69
X X - - - 9.27 6.58 9.81
X X - - X 8.23 2.75 8.70
X X X - - 9.26 6.59 9.72
X X X X - 8.96 6.44 9.45
X X X X X 8.10 2.68 8.45

can see that our method with no changing linkages is mostly
the best. Although sharing parameters between the Recover
Cell reduces FD and parameters, it creates relatively weak
overall shapes and higher CD. It is an interesting phenomenon,
indicating that appropriate parameter-shared linkages to learn a
common pattern, such as transformation from lower to higher
resolutions, can improve the network performance.

TABLE VIII
ABLATION STUDY FOR PARAMETER-SHARED LINKAGES.

Enc* Dec* Rec Raw CD FD Para (M)
X - - - 8.15 2.84 4.41
- X - - 8.12 3.36 4.81
- - X - 8.12 2.78 3.04
- - - X 8.10 2.82 3.43

Influence of the recurrence level. In this section, we
explore the influence of the recurrence level on the completion
performance. By adjusting the number of output points in the
Initialize Cell, we attempt to complete the original model with
1, 2 and 3 levels. Note that we do not test a recurrent level of
more than 3 points because the resolution of the Initialize Cell
needs to be 4 points or less under this condition, which cannot
provide an available initial shape. The results are presented in
Table IX. We can see that the CD increases and FD decreases
as the recurrence level increases, which means that the network
focuses more on the overall performance and weakens the
fidelity. We adopt 3 recurrent levels in this work.

TABLE IX
INFLUENCE OF THE RECURRENT LEVEL.

Level 1 2 3
CD 9.13 8.15 8.10
FD 1.87 2.41 2.82

J. Limitation and Failure Cases

In this section, we discuss the limitation of ARFNet. A few
failure cases are presented in Fig. 15. We can see that some
textures from the missing regions of the partial input are also
introduced to the completed results. This condition may come
from the limitations of the Adamerge module. Although the
Adamerge module can adaptively adjust the merge range for
each point to avoid a lot of noise following Sec. III-C, it may
sometimes regard noise as a part of the original shape details.
More reasonable network structures can be designed in the
Adamerge module to help it better distinguish the details from
the noise in future works.

Fig. 15. Failure cases of ARFNet.

V. CONCLUSION

In this paper, we propose an adaptive recurrent forward
network for dense point cloud completion (ARFNet), which
is organized into multiple recurrent levels. The output model
from the former level will be concatenated with the incomplete
model and fed to the latter level as a “partial incomplete
model”. The work consists of three parts: RFE, FDC and RSP.
The RFE extracts multiple global features for completion at
different resolutions, and the FDC generates completed point
clouds from coarse to fine. The RSP is used to introduce details
from the original incomplete models to the generated outputs.
Specifically, we propose the Adamerge module to adaptively
drive points toward the original points. In addition, we share
parameters between some complex modules to greatly reduce
the parameter quantities and model size. We also propose
a Sampling Chamfer Distance and a balanced expansion
constraint to better capture the shape differences and improve
the completion performances in the multilevel structure. Ex-
periments on ShapeNet and KITTI indicate that ARFNet can
achieve state-of-the-art performances with a lower cost than
the existing methods. The limitations of ARFNet lies in the
operation of the Adamerge module, which may sometimes
regard noise from partial inputs as shape details and introduce
them to the completed results. We will attempt to overcome
this problem by improving the network structures in the
Adamerge module in future works. In addition, completing
large-scale scene data might also be an interesting task, which
is a current challenge for the existing completion networks. We
will also further explore the application of ARFNet to scenes.

ACKNOWLEDGMENT

Thanks for the excellent and inspiring effort of the authors,
reviewers and editor to improve the quality of this work.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[2] N. Dinesh Reddy, M. Vo, and S. G. Narasimhan, “Carfusion: Combining
point tracking and part detection for dynamic 3d reconstruction of
vehicles,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 1906–1915.

[3] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas, “Frustum pointnets
for 3d object detection from rgb-d data,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 918–
927.

12

[4] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal generation
and detection from point cloud,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 770–779.

[5] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 12 697–12 705.

[6] M. Liang, B. Yang, S. Wang, and R. Urtasun, “Deep continuous fusion
for multi-sensor 3d object detection,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 641–656.

[7] S. Giancola, J. Zarzar, and B. Ghanem, “Leveraging shape completion
for 3d siamese tracking,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 1359–1368.

[8] J. Hou, A. Dai, and M. Nießner, “3d-sis: 3d semantic instance segmen-
tation of rgb-d scans,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 4421–4430.

[9] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner,
“Scancomplete: Large-scale scene completion and semantic segmenta-
tion for 3d scans,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4578–4587.

[10] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn: Point
completion network,” in 2018 International Conference on 3D Vision
(3DV). IEEE, 2018, pp. 728–737.

[11] H. Xie, H. Yao, S. Zhou, J. Mao, S. Zhang, and W. Sun, “Grnet: Grid-
ding residual network for dense point cloud completion,” in European
Conference on Computer Vision. Springer, 2020, pp. 365–381.

[12] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
652–660.

[13] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in neural
information processing systems, 2017, pp. 5099–5108.

[14] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese,
“Topnet: Structural point cloud decoder,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 383–
392.

[15] X. Wen, T. Li, Z. Han, and Y.-S. Liu, “Point cloud completion by
skip-attention network with hierarchical folding,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1939–1948.

[16] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[17] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[18] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on
pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2017.

[19] X. Wang, M. H. Ang Jr, and G. H. Lee, “Cascaded refinement network
for point cloud completion,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020, pp. 790–799.

[20] W. Zhang, Q. Yan, and C. Xiao, “Detail preserved point cloud com-
pletion via separated feature aggregation,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXV 16. Springer, 2020, pp. 512–528.

[21] A. Dai, C. Ruizhongtai Qi, and M. Nießner, “Shape completion using
3d-encoder-predictor cnns and shape synthesis,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 5868–5877.

[22] X. Han, Z. Li, H. Huang, E. Kalogerakis, and Y. Yu, “High-resolution
shape completion using deep neural networks for global structure and
local geometry inference,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 85–93.

[23] D. Li, T. Shao, H. Wu, and K. Zhou, “Shape completion from a single
rgbd image,” IEEE transactions on visualization and computer graphics,
vol. 23, no. 7, pp. 1809–1822, 2016.

[24] S. Bai, X. Bai, Z. Zhou, Z. Zhang, Q. Tian, and L. J. Latecki, “Gift:
Towards scalable 3d shape retrieval,” IEEE Transactions on Multimedia,
vol. 19, no. 6, pp. 1257–1271, 2017.

[25] J. Huang, W. Yan, T. H. Li, S. Liu, and G. Li, “Learning the global
descriptor for 3d object recognition based on multiple views decompo-
sition,” IEEE Transactions on Multimedia, 2020.

[26] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional
neural networks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 984–993.

[27] T. Le and Y. Duan, “Pointgrid: A deep network for 3d shape under-
standing,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 9204–9214.

[28] Y. Chen, S. Liu, X. Shen, and J. Jia, “Fast point r-cnn,” in Proceedings
of the IEEE International Conference on Computer Vision, 2019, pp.
9775–9784.

[29] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang, and
J. Kautz, “Splatnet: Sparse lattice networks for point cloud processing,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2530–2539.

[30] S. Qiu, S. Anwar, and N. Barnes, “Geometric back-projection network
for point cloud classification,” IEEE Transactions on Multimedia, 2021.

[31] H. Liu, Y. Guo, Y. Ma, Y. Lei, and G. Wen, “Semantic context
encoding for accurate 3d point cloud segmentation,” IEEE Transactions
on Multimedia, 2020.

[32] C. Chen, S. Qian, Q. Fang, and C. Xu, “Hapgn: Hierarchical attentive
pooling graph network for point cloud segmentation,” IEEE Transactions
on Multimedia, 2020.

[33] Z. Han, X. Wang, Y.-S. Liu, and M. Zwicker, “Multi-angle point cloud-
vae: unsupervised feature learning for 3d point clouds from multi-
ple angles by joint self-reconstruction and half-to-half prediction,” in
2019 IEEE/CVF International Conference on Computer Vision (ICCV).
IEEE, 2019, pp. 10 441–10 450.

[34] C. Wang, B. Samari, and K. Siddiqi, “Local spectral graph convolution
for point set feature learning,” in Proceedings of the European confer-
ence on computer vision (ECCV), 2018, pp. 52–66.

[35] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan,
“Pointflow: 3d point cloud generation with continuous normalizing
flows,” in Proceedings of the IEEE International Conference on Com-
puter Vision, 2019, pp. 4541–4550.

[36] X. Sheng, L. Li, D. Liu, Z. Xiong, Z. Li, and F. Wu, “Deep-pcac: An end-
to-end deep lossy compression framework for point cloud attributes,”
IEEE Transactions on Multimedia, 2021.

[37] T. Huang and Y. Liu, “3d point cloud geometry compression on deep
learning,” in Proceedings of the 27th ACM International Conference on
Multimedia, 2019, pp. 890–898.

[38] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-net: Point
cloud upsampling network,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2790–2799.

[39] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-gan: a point
cloud upsampling adversarial network,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 7203–7212.

[40] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” Acm
Transactions On Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[41] D. Valsesia, G. Fracastoro, and E. Magli, “Learning localized represen-
tations of point clouds with graph-convolutional generative adversarial
networks,” IEEE Transactions on Multimedia, vol. 23, pp. 402–414,
2020.

[42] Z. Fu and W. Hu, “Dynamic point cloud inpainting via spatial-temporal
graph learning,” IEEE Transactions on Multimedia, 2021.

[43] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks
on 3d point clouds,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 9621–9630.

[44] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and
L. J. Guibas, “Kpconv: Flexible and deformable convolution for point
clouds,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 6411–6420.

[45] Z. Huang, Y. Yu, J. Xu, F. Ni, and X. Le, “Pf-net: Point fractal
network for 3d point cloud completion,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
7662–7670.

[46] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-
rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.

[47] M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu, “Morphing and
sampling network for dense point cloud completion,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020,
pp. 11 596–11 603.

[48] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger, “Con-
volutional occupancy networks,” in European Conference on Computer
Vision. Springer, 2020, pp. 523–540.

13

[49] J. Chibane, T. Alldieck, and G. Pons-Moll, “Implicit functions in feature
space for 3d shape reconstruction and completion,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 6970–6981.

[50] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud
auto-encoder via deep grid deformation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 206–
215.

[51] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for
3d object reconstruction from a single image,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
605–613.

[52] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[54] T. Huang, H. Zou, J. Cui, X. Yang, M. Wang, X. Zhao, J. Zhang,
Y. Yuan, Y. Xu, and Y. Liu, “Rfnet: Recurrent forward network for dense
point cloud completion,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 12 508–12 517.

