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Surrogate models are widely used to model the high computational cost problems such as
industrial simulation or engineering optimization when the size of sampled data for mod-
eling is greatly limited. They can significantly improve the efficiency of complex calcula-
tions by modeling original expensive problems with simpler computation-saving
functions. However, a single surrogate model cannot always perform well for various prob-
lems. On this occasion, hybrid surrogate models are created to improve the final perfor-
mances on different problems by combining advantages of multiple single models.
Nevertheless, existing hybrid methods work by estimating weights for all alternative single
models, which limits the efficiency when more single models are adopted. In this paper, we
propose a novel hybrid surrogate model quite different from former methods, named the
Deep Residual Surrogate model (DRS). DRS does not merge all alternative single surrogate
models directly by weights, but by assembling selected ones in a multiple layers structure.
We propose first derivate validation (FDV) to recurrently select the single surrogate model
adopted in each layer from all candidates. Experimental results on multiple benchmark
problems demonstrate that DRS has better performances than existing single and hybrid
surrogate models in both prediction accuracy and stability with higher efficiency.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid development of the computation ability of devices, many actual problems can be modeled and solved
directly. However, some computation expensive problems such as the engineering optimizations [39,38,50,31,5,36], require
for multiple complicated calculations to get the optimal solution, which suffer from great computational cost. Under this cir-
cumstance, surrogate models are proposed to model actual engineering problems with a small amount of sampled data.
Computation expensive problems can be approximated with low resource-consumed surrogate models. Then an optimal
solution for the original complex problem can be solved with an optimization strategy such as Evolutionary Algorithm
[40,3,44,7,30] based on corresponding surrogate models, which can greatly improve the optimization efficiency.

Since modeling engineering problems more accurately can improve the optimal results, Many works have been proposed
to improve the prediction accuracy of surrogate models under the limited sampled data. Single surrogate models have been
proposed such as Kriging [15,34,11] and RBF [17,20,18]. As every single surrogate model is only suitable for a few kinds of
problems, later works combine multiple models together in order to improve the overall performances on multiple different
tem and
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problems, known as the hybrid surrogate models [46,2,43,1,48,37]. Most Hybrid surrogate models estimate weights for pro-
vided alternative models and use all of them during prediction, which may take much longer time than single surrogate
models.

In this work, we propose a new hybrid algorithm named the Deep Residual Surrogate model (DRS), which is composed of
multiple single models organized in a multi-layer structure. In DRS, we propose an algorithm named First Derivate Valida-
tion (FDV) to evaluate and choose a single surrogate model for each layer from all provided candidates. The subsequent layer
is responsible for predicting the residual of the previous layer. Finally, the chosen models will be overlaid together to con-
struct the complete DRS model. Experimental results confirm that DRS can outperform former single surrogate models, also
much faster than existing hybrid surrogate models. The remainder of the paper is organized as follows: Section 2 reviews
existing surrogate modeling techniques; Section 3 presents our methodology of FDV and DRS; Section 4 shows all relevant
experiments; Section 5 summarizes the whole work and discuss the future works where DRS may be further applied.

Our contribution can be summarized as:

1. We propose a new algorithm named First Derivate Validation (FDV) to measure the error of single surrogate models by
considering the error gain after removing vital points with lower gradients;

2. We propose a new hybrid algorithm named Deep Residual Surrogate model (DRS), which chooses and assembles single
models in a multi-layer structure based on FDV instead of combining them by weights like other methods;

3. Our experiments on multiple benchmark problems confirm that our proposed FDV can evaluate the model error more
accurately than other validation methods, while DRS can outperform existing surrogate models in both accuracy and
stability.

2. Related Works

2.1. Single Surrogate Model

Many surrogate models have been developed to solve computation expensive problems. Commonmethods include: Poly-
nomial Response Surface Model (PRSM) [29], Kriging [15,11], Radial Basis Function (RBF) [17,18], Extended Radial Basis
Function(E-RBF) [27,28,49], Artificial Neural Network (ANN) [13,45], and Support Vector Regression (SVR) [10,41,42,4]. PRSM
is one of the most widely used surrogate models, suitable to capture the global trend of training data. Parameters of PRSM are
determined by the data dimension and polynomial order, which will not increase as the data size grows. Generally speaking,
the quadratic polynomial model (QP), also known as the second order polynomial model is the most popular among PRSM
models of different orders. However, PRSM ignores local shapes of target curves, which dramatically limits its adoption. Krig-
ing models data by the combination of response model and stochastic process, which has shown great performance in many
conditions. RBF presents data by the linear combination of radial basis kernel functions based on Euclidean distance between
points. E-RBF combines RBF with N-RBF [33], which adopts kernel functions not based on radial distances but based on dis-
tances between coordinates dimensions. ANN and SVR are typical machine learning methods which model data with suffi-
cient parameters and get optimized with multiple iterations. Machine learning methods can achieve good performances
with complex settings of hyper-parameters and relatively large data. But it may be challenging to find the correct settings
for them. To select the single surrogate model for a specific optimized problem, COSMOS [25] and AutoSM [19] introduce the
Evolutionary Algorithm (EA) to search for the most appropriate one from all candidates, while they have relatively high com-
putational costs due to the adoption of EA.

2.2. Hybrid Surrogate Model

Except the commonly used single surrogate models, hybrid surrogate models are proposed to combine the advantages of
different single models, such as [46,2,43,1]. They usually work by estimating weights for multiple single surrogate models
with designed algorithms. In related researches [43,2], the cross-validation error is often adopted to estimate the accuracy of
single models and calculate corresponding weights. Some works [2,43] give constant weights for single models and optimize
them by minimizing validation errors over the whole design space, known as global measure methods. These works can per-
form better than single surrogate models. However, they are often doubted for the local accuracy of each single model. On
this condition, some local measure methods [35,1,23] distribute weights for single models point-by-point, which means that
weights for different points on the same single model could be quite different. However, they may instead ignore the global
trend of models and suffer from high computational costs. To integrate advantages of global and local measure methods,
some recent works [48,8,47] hybrid both measures to estimate the weights.

AHF [48] proposes a Crowding Distance-based Trust Region (CD-TR) algorithm to estimate the errors of single models.
This algorithm estimates upper and lower boundary functions by a base model to measure the global trend and sampling
density around each training point to measure local distributions. Boundary functions are used together to estimate model
errors and weights. The performance of AHF is greatly influenced by the chosen base model. ES-HGL [8] combines the global
and local measure methods by dividing design space into two regions, one for the region far from sampled points, the other
for the region near sampled points. Global constant and local weights are calculated and adopted in the outer and inner
regions, respectively. UES [47] adopts a similar idea with ES-HGL to hold global constant weights and local weights in dif-
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ferent regions. But UES has a more fuzzy boundary because it designs a function to further estimate factors for global and
local weights according to the distance from sampled points, instead of natural selection as ES-HGL.

3. Methodology

3.1. First Derivative Validation

In most applications, we compare the robustness and performances of different surrogate models with cross-validation
methods such as the commonly used Holdout cross-validation and K-fold cross-validation. Holdout cross-validation calcu-
lates validation errors on the validation data randomly divided from the training data, which has apparent uncertainty due to
the randomness. K-fold cross-validation reduces the uncertainty by evaluating the validation errors through the average
value of multiple non-coincident training and validation data groups. However, K-fold cross-validation has high time and
memory costs due to multiple circulations to acquire the validation error. Besides, the final validation error is the average
result of multiple experiments. More valuable results may be covered by less valuable ones in this process, which may mis-
lead the evaluation.

First derivative validation (FDV) aims to estimate the performances of different single surrogate models and choose the
best one for subsequent processing. For FDV, we assume that an appropriate surrogate model should be suitable for the data
no matter how the sampled points change. In other words, an appropriate model should suffer from a smaller error gain after
removing some of the training points, where the error gain denotes how much the prediction errors on all training points
increase.

Points with smaller first derivatives are often close to vertexes of curves or surfaces, which play more critical roles in
describing shapes. In this condition, by removing some points with smaller first derivatives and training models on the
remained points, more general validation errors can be evaluated by the error gain on all training points. However, evaluating
performances purely by error gains after removing points with smaller first derivatives from training points may be mislead-
ing sometimes. Simple models, e.g., quadratic polynomial model, often enjoy lower error gains when data are changed. But
they often have higher training errors on training points. So, adding a constraint for training error is necessary. The final val-
idation error is the combination of FDV error gain and training error. The algorithm is presented as Algorithm1, where the
points removing ratio b and balance ratio a denote the percentage of removed training points and the weight for error gain.

Algorithm1: First Derivative Validation

Input: Training points x ¼ ðx1; x2; x3; � � � ; xNÞ,
Target values y ¼ ðy1; y2; y3; � � � ; yNÞ,
Target model f, points removing ratio b, balance ratio a
Output: Evaluated error of target model evaerr
Train target model with training points and target values:
f ¼ solveðx; y; f Þ
Evaluate training error on training points:

err ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðf ðxiÞ � yiÞ2

q
Get k points with smaller first derivates:
ids ¼ topkð�rxf ðxÞÞ; k ¼ b � lenðxÞ
Remove k points with smaller first derivates:
x0 ¼ xidRids; y0 ¼ yidRids
Train model with x0 and y0:
f 0 ¼ solveðx0; y0; f Þ
Evaluate the training error of f 0 on all training points:

err0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1ðf 0ðxiÞ � yiÞ2

q
The final error:
evaerr ¼ a � ðerr0 � errÞ þ err ¼ a � err0 þ ð1� aÞ � err
3.2. Deep Residual Surrogate Model

Though many hybrid surrogate models have been proposed to overcome the limitations of single surrogate models, they
often calculate the final output by the weighted sum of all alternative models. In our work, we proposed a framework named
the Deep Residual Surrogate model (DRS) which is quite different from former hybrid methods. Single surrogate models are
recurrently chosen and overlaid together to make up the more effective model. In this way, the final hybrid model is com-
posed of several chosen models in multiple layers instead of all models, greatly improving inference efficiency. In this work,
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we choose 5 single surrogate models as candidates, including quadratic polynomial model (QP) [29], Kriging model [11], SVR
[42], RBF and RBF_MQ model [17]. For convenience, we name the set including all alternative single surrogate models as the
model pool in follow-up discussions.

DRS is organized in a multi-layer structure. In each layer, a single surrogate model is chosen from the model pool with
FDV presented in Section1. Corresponding model parameters are saved, and models in subsequent layers will refine the cur-
rent prediction. The final result of DRS would be the sum of models in multiple layers. To ensure the training process can pass
through multiple layers, we define an equalization operation for the prediction of single-layer model:
pred ¼ pred
layernum ;

y ¼ y� pred;
ð1Þ
where pred and layernum are the prediction of surrogate model in the former layer and the number of layers in DRS. As illus-
trated in Eq. 1, the target value for the next layer will be replaced by the residual between the current target value and the
predicted result. The equalization operation is used to scale the predicted result to prevent the residual from being too small
to train the model in the next layer. In this way, the model in the next layer will learn to make up for weaknesses of the
model in the former layer and improve the final performance.

Note that the multi-layer structure in DRS is adopted to find the best combination of single models, where the selected
model in each layer could be quite different. The latter model is determined according to the performance of the former
model, which is different from direct distributed weights of 1=layernum. For instance, if we choose a relatively smooth single
model in the first layer which can fit the global shapes well, then a varied model is tended to be chosen in the second layer to
describe the local shapes. More intuitive confirmation by experiments could be found in Section 4.5. The details of solving
and prediction with DRS are shown in Algorithm2 and Algorithm3, where b is 1/7, a is 1, and layernum of DRS is set as 2. In
other words, two single models would be chosen from the model pool to calculate the final output.

Algorithm2: The Solving process of Deep Residual Surrogate Model

Input: Training points x ¼ ðx1; x2; x3; � � � ; xNÞ,
Target values y ¼ ðy1; y2; y3; � � � ; yNÞ, model pool P,
Target model f, points removing ratio b, balance ratio a,
The number of layers layernum,
Output: Trained model list Model list
Initialize intermediate residual value:
yinter ¼ y
while lenðModel listÞ < layernum do
Errlist ! ½�
for each model p in P do
evaerr ¼ FDVðx; yinter; p;a; bÞ
Errlist:insertðevaerrÞ
end for
Model ¼ solveðx; y; P½minðErrlistÞ�Þ
yinter ¼ yinter � Model:predictðxÞ

layernum

Model list:insertðModelÞ
end while

Algorithm3: The Prediction process of Deep Residual Surrogate Model

Input: Target points x̂ ¼ ðx̂1; x̂2; x̂3; � � � ; x̂NÞ,
Trained model list Model list
Output: Predicted values ŷ ¼ ðŷ1; ŷ2; ŷ3; � � � ; ŷNÞ
Initialize predicted value ŷ : ŷ ¼ 0
for each model m in Model list do
if m is not the last in Model list then

ŷ ¼ ŷþ m:predictðx̂Þ
lenðModel listÞ

else
ŷ ¼ ŷþm:predictðx̂Þ
end if
end for
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Experiments in Section 4.6 show that DRS outperforms existing surrogate models in both accuracy and stability. Besides,
the time efficiency of DRS is also higher other hybrid algorithms, which confirms that DRS is an effective and efficient
algorithm.
4. Experiments and Discussion

4.1. Benchmark Problems

To evaluate the performance of DRS on multiple conditions, we choose 27 commonly used benchmark problems
[16,26,12,27,6,26,14,37] from 1 to 8 dimensions. The specific definitions of them are demonstrated in Fig. 5. Latin hypercube
sampling (LHS) [24] is used to sample both training and testing points on benchmark problems. The process of LHS is pre-
sented in Fig. 1. In each dimension, intervals are uniformly divided between the lower and upper bounds of benchmark prob-
lems according to the number of sampled points. The intervals are then shuffled separately in each dimension. Data points
are randomly sampled among the intervals. We sample 36 training points and 100 test points for each benchmark problem
in this work.
Fig. 1. The process of Latin hypercube sampling(LHS). np and d are the number of sampled points and data dimensions, respectively. xdnp means the npth
interval in dth dimension.
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4.2. Metrics

1. RMSE (Root Mean Squared Error) is the most common metric for regression problems, which evaluates the average dis-
tance between the predicted outputs and target values. It can be presented as
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðyi � f ðxiÞ2Þ
vuut ; ð2Þ

where n denotes the number of testing points chosen for the evaluation, yi and f ðxiÞ denote the true value and predicted
value for testing point xi, respectively. Lower RMSE means the algorithm is more accurate.
To avoid the influence of various output ranges in different benchmark problems, we also introduce the NRMSE (Normal-
ized Root Mean Squared Error) presented as

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyi � f ðxiÞ2

Xn
i¼1

y2i

vuuuuuuut ; ð3Þ

where corresponding definitions of n; yi and f ðxiÞ are the same as Eq. 2. In this work, we adopt both RMSE and NRMSE to
evaluate the errors.

2. Hit Rate is a metric proposed to better compare the performances between different surrogate models. It evaluates the
probability when a surrogate model can work best, which can be defined as
Hit Rate ¼ 1
N

XN
i¼1

FðEf ðpiÞ;min
f

Ef ðpiÞÞ; ð4Þ

Fðx; yÞ ¼ 0 kx� yk P d

1 kx� yk 6 d;

�
ð5Þ

where N is the number of benchmark problems. d is a tiny value as threshold to judge if two values are equal. Fðx; yÞ is the
count function used to count the number of times that Ef ðpiÞ achieves the best, while Ef ðpiÞ denotes the metric value E of
surrogate model f on ith benchmark problem pi.
Note that Hit Rate is a general concept, which means that an arbitrary metric can be evaluated under Hit Rate. For exam-
ple, RMSE can be applied to calculate RMSE Hit Rate, which can evaluate the probability of getting minimum RMSE. Hit
Rate pays more attention to the relative performances between models. In other words, It is more concerned about which
model tends to perform better than other models.

3. Time cost is adopted to evaluate the efficiency as a supplementary metric in this work, which is defined as the execution
time for a specific operation. For the evaluation of FDV, it is defined as time taken by different validation operations. As for
the evaluation of DRS, it is defined as time consumed by predicting the final output. Less time cost means that the algo-
rithm can work faster.

4. RMSE Variance is used to describe the model stability during multiple experiments, also reflecting the robustness against
the changing of initial sampled points. It is defined as the error variance during multiple experiments, which can be pre-
sented as
RMSE Variance ¼ 1
N

XN
i¼1

ðRMSEi � 1
N

XN
i¼1

RMSEiÞ
2

; ð6Þ

where N is the number of experiments, RMSEi denotes RMSE of ith experiment. Smaller RMSE Variance means the algo-
rithm gets relatively close errors during multiple experiments, which confirms it works steadier.

4.3. Visualization of the Points Selection Rule in FDV

In this section, We take GRAMACY & LEE function [16] to show the regularity of FDV in Fig. 2. The red points are points
with lower first derivatives to be removed, while the black ones are those that remained. We can see that Kriging and RBF
tend to change a lot after removing FDV points, which will lead to large error gains. Though QP has relatively small changing
and error gain after removing points, it has a too big deviation from the raw curve. RBF_MQ is more robust to the remove-
ment of points with also slight deviation, which is finally chosen as the best model by FDV. According to the errors evaluated
on testing points, the chosen RBF_MQ has the most minor error of 0.316 among all candidates, which means FDV can really
help choose the most accurate model.
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Fig. 2. The visualization of FDV regularity.
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4.4. Comparisons between FDV and other Validation Methods

In this section, we compare FDV with two commonly used validation methods: K-fold cross-validation and Holdout cross-
validation. K-fold cross-validation with 1,3,5,7 folds and Holdout cross-validation with 1/3, 1/5, 1/7, 1/9 selected validation
points are adopted for comparisons in this work.

Validation methods are often adopted to compare the performances of different surrogate models and choose the best
one. To observe the effectiveness of our validation strategy, we compare the effects of single models chosen through different
validation strategies from the model pool including QP [29], Kriging [11], SVR [42], RBF and RBF_MQ [17]. We use (1) Time
cost, (2) RMSE, (3) NRMSE, (4) RMSE Variance to evaluate the efficiency and performances. Besides, to further confirm if FDV
has effectively measured the actual error, we calculate the predicted RMSE and NRMSE between the validation error calcu-
lated on training points and the actual error acquired on testing points.

The experimental results are presented in Table 1. From the result, we can see that models chosen by FDV have both the
smallest errors and variances. It confirms that FDV can choose the best surrogate model more accurately and steadier than
other methods. Besides, the time cost of FDV is close to Holdout cross-validation, which is much faster than K-fold cross-
validation. We can also see that FDV gets the smallest predicted RMSE and NRMSE. It means the validation error calculated
with FDV is much closer to the actual error than other validation methods, which confirms that FDV is an effective validation
method.

To verify that FDV gets the most effective model for every benchmark problem from a given model pool instead of choos-
ing a certain model which always performs well in all conditions, we examine our method on different model pools. We
gradually remove the best performance model from the model pool to get four different model pools.
Table 1
The comparison of FDV with other validation methods. K-fold and Holdout denote K-fold cross-validation and Holdout cross-validation, respectively. Rate
denotes the number of folds for K-fold cross-validation and the percentage of validation points for Holdout cross-validation.

Rate Time(ms) NRMSE(10�2) RMSE(103) RMSE Variance(108) Predicted RMSE(103) Predicted NRMSE

K-fold 3 5.172 8.834 10.515 5.683 10.816 0.299
5 8.959 9.353 8.662 2.835 8.232 0.473
7 12.889 9.126 9.084 2.213 9.570 0.477
9 17.506 10.815 11.155 5.192 7.512 0.567

Holdout 1/3 1.733 8.528 15.018 9.856 11.208 0.290
1/5 1.823 9.667 11.411 3.831 11.019 0.187
1/7 1.888 7.459 12.861 10.002 11.723 0.365
1/9 1.874 7.525 12.474 8.540 13.473 0.230

FDV 1.892 6.953 7.781 1.576 7.045 0.106
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The results are presented in Table 2. We can see that models chosen by FDV can always reach smaller errors and variances
than other methods, even when the model pool changes. FDV always works much faster than K-fold cross-validation, though
slightly slower than Holdout cross-validation, which divides data randomly. Chosen models under all combinations of can-
didate models in the model pool have relatively big variances because the training points sampled by LHS [24] would be
Table 2
The Comparison of single surrogate models chosen with validation methods among different alternative model pools.

Model Pool Validation Time(ms) NRMSE(10�2) RMSE(103) RMSE Variance (108)

Kriging + RBF_MQ + RBF + QP + SVR K-fold 12.889 9.126 9.084 2.213
Holdout 1.888 7.459 12.861 10.002
FDV 1.892 6.953 7.781 1.576

RBF_MQ + RBF + QP + SVR K-fold 4.455 11.385 8.985 2.4963
Holdout 0.666 10.098 15.643 11.657
FDV 0.672 9.515 7.202 0.546

RBF + QP + SVR K-fold 4.033 30.165 19.004 4.863
Holdout 0.604 27.045 20.743 5.536
FDV 0.608 27.515 18.007 3.873

QP + SVR K-fold 2.889 31.748 24.652 4.97
Holdout 0.440 27.829 29.059 8.295
FDV 0.438 24.694 24.071 3.669

Fig. 3. The Visualization of multiple layers in DRS.
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quite different in multiple experiments. FDV has the smallest variances for all model pools, which confirms that it is the most
robust to sampled points. It can choose the best single surrogate model steadier when the training points change in multiple
experiments.

4.5. Visualization of Chosen Models in DRS

As we present in Section 3.2, DRS recurrently selects and overlies different single surrogate models in multiple layers to
achieve good performances. In this section, we choose a 1-dimensional test function GRAMACY & LEE [16] and a 2-
Table 3
The Comparison of hybrid surrogate methods under different model pools.

Model Pool Algorithm Time(ms) NRMSE(10�2) RMSE(103) RMSE Variance (108)

Kriging + RBF_MQ + RBF + QP + SVR AHF 0.845 16.485 16.294 3.206
ES-HGL 1.063 21.334 11.869 1.695
UES 17.677 22.174 11.951 1.814
DRS 0.275 8.530 8.058 1.579

RBF_MQ + RBF + QP + SVR AHF 0.566 19.612 17.255 5.241
ES-HGL 0.786 26.420 13.667 3.265
UES 26.826 26.994 15.110 4.581
DRS 0.125 10.447 7.915 2.243

RBF + QP + SVR AHF 0.478 24.468 23.668 6.441
ES-HGL 0.747 36.529 23.292 8.140
UES 39.419 36.222 23.328 8.137
DRS 0.126 27.777 22.929 8.491

QP + SVR AHF 0.402 24.975 24.524 4.462
ES-HGL 0.695 25.109 23.986 4.115
UES 8.685 23.816 23.318 4.190
DRS 0.124 24.361 23.183 3.176

Fig. 4. The Comparison of hybrid models under different points numbers.

Table 4
The Comparison of all surrogate methods. ANN-1 � ANN-7 denote the Artificial Neural Networks with 1 � 7 hidden layers.

Methods Time(ms) NRMSE RMSE(103) RMSE Variance(107) NRMSE Hit rate RMSE Hit rate Variance Hit Rate

AHF 0.930 0.228 9.417 15.043 0.185 0.148 0.111
ES-HGL 1.161 0.358 9.602 7.053 0.037 0.037 0
UES 16.458 0.375 9.86 7.525 0 0 0
QP 0.068 0.271 12.524 10.661 0.074 0.074 0.111

Kriging 0.272 0.227 4.317 8.108 0.148 0.148 0.222
RBF_MQ 0.074 0.465 9.752 6.648 0.111 0.111 0.111

RBF 0.071 0.457 17.146 18.592 0.037 0.037 0.037
SVR 0.106 0.544 21.794 19.017 0.037 0.074 0.111

ANN-1 0.858 2.055 80.965 395.849 0 0 0
ANN-3 2.094 2.081 83.519 539.706 0 0 0
ANN-5 3.176 2.051 83.185 689.056 0 0 0
ANN-7 4.279 2.099 82.702 802.780 0 0 0
DRS 0.312 0.211 3.316 5.911 0.37 0.37 0.296
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dimensional test function HOLDERTABLE [14] as examples to observe how DRS chooses and combines single surrogate mod-
els. We visualize the curves of single surrogate models chosen in different layers of DRS in Fig. 3. The first column shows the
curves of benchmark problems, while the second and third columns show the curves predicted by models chosen in the first
and second layers, respectively.

We can see that DRS actually works by breaking down the original complicated function into multiple simpler functions.
It tends to choose a relatively smooth model in the first layer to fit the overall shape and a varied model in the second layer to
make up local details. Note that the model pool including multiple alternative single surrogate models is not changed during
the iteration of DRS. It means choosing the same model repeatedly is allowed here, in which condition DRS actually chooses
only one single model because it is judged to work better than the combination of multiple models under this group of sam-
pled points.

4.6. Comparisons between DRS and other Surrogate Models

To prove that DRS is robust to different combinations of candidate models, we compare DRS with other hybrid surrogate
models under changing model pools on test functions 1 to 10. The results are presented in Table 3, all of them are the average
values of 30 repeated experiments. We can see that DRS outperforms other hybrid algorithms on Time cost, RMSE, NRMSE
and variance in most conditions, which demonstrates that it is faster, steadier and more accurate than other hybrid methods.

Considering that the number of sampled points may have a great impact on the final performances of models, we change
the number of sampled training points between 20 � 52. All single surrogate models, including QP [29], Kriging [11], SVR
[42], RBF and RBF_MQ model [17], are involved in the model pool. The results are given in Fig. 4. We can see that errors
of all models tend to increase when the number of sampled points decreases. DRS still outperforms other hybrid models
under different point numbers. Finally, to give a more comprehensive comparison evaluation for DRS, we compare it with
all single and hybrid surrogate models on benchmark problems. Results are shown in Table 4. The Artificial Neural Networks
with 1,3,5,7 hidden layers are evaluated, while we adopt 64 neurons in each hidden layer. We can see that DRS can achieve
smaller errors and variances, while getting the highest Hit rates. It means DRS outperforms other surrogate models in accu-
racy and stability. Though DRS is slower than single models due to the combination process of multiple single models, it is
still much faster than other hybrid surrogate algorithms.

5. Conclusion and Future Work

In this paper, we propose a novel hybrid surrogate model named the Deep Residual Surrogate model (DRS). In DRS, single
surrogate models are not combined directly by weights like other hybrid algorithms. They are evaluated by proposed First
Derivate Validation (FDV) and chosen from the model pool according to acquired validation errors, which are recurrently
trained and overlaid together to predict the final output. In our work, we include QP, Kriging, RBF, RBF_MQ and SVR in
the model pool of DRS. 27 commonly used benchmark problems from 1 dimension to 8 dimensions are adopted to test
our algorithm. The results confirm that DRS has better performances in both accuracy and stability than former surrogate
algorithms, also much faster than existing hybrid models. As an effective and efficient algorithm to model highly computa-
tional cost problems, DRS can help accelerate their optimization process. We will further explore to adopt DRS in more
diverse areas such as 3D mesh simplification [22], image registration [9], object detection [32] and feature selection [21]
in our future work.
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