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a b s t r a c t 

The increasing number of points in 3D point clouds has brought great challenges for subsequent algo- 

rithm efficiencies. Down-sampling algorithms are adopted to simplify the data and accelerate the com- 

putation. Except the well-known random sampling and farthest distance sampling, some recent works 

have tried to learn a sampling pattern according to the downstream task, which helps generate sampled 

points by fully-connected networks with fixed output point numbers. In this condition, a progress-net 

structure covering all resolutions sampling networks or multiple separate sampling networks for differ- 

ent resolutions are required, which is inconvenient. In this work, we propose a novel learning-based 

point cloud sampling framework, named Fast point cloud sampling network (FPN), which drives initial 

randomly sampled points to better positions instead of generating coordinates. FPN can be used to sam- 

ple points clouds to any resolution once trained by changing the number of initial randomly sampled 

points. Results on point cloud reconstruction and recognition confirm that FPN can reach state-of-the-art 

performances with much higher sampling efficiency than most existing sampling methods. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

With the rapid development of 3D tasks, point cloud has at- 

racted more and more attentions in computer vision and robots. 

owever, larger and larger point clouds may limit the efficiency 

f related algorithms and ask for more advanced equipment. Sam- 

ling the original point clouds to lower resolutions is an alterna- 

ive solution to reduce the computational cost. Existing works [1–

] often use random sampling and the farthest point sampling 

FPS) to down-sample the point clouds. However, the direct sam- 

ling methods do not consider down-stream tasks, which limits 

heir further improvements on task performances. In this condi- 

ion, some researchers [4,5] introduce task-oriented optimizations 

o guide the sampling process. S-Net [5] generates sampled points 

irectly by fully-connected networks. Sampled points would be fed 

nto a pre-trained task network to provide a task-oriented loss. In 

his way, the performances of sampled points on specific task net- 

ork will be improved. To provide supports for different resolu- 

ions, [5] also proposes a progress-net structure to generate sam- 

led points with the same number of input points and choose 

oints from all generated points according to the resolution. Points 

f multiple sampling resolutions are then fed into the task net- 
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ork to get constraints for all resolutions. However, the progress- 

et structure actually trains all resolution networks together, which 

ncreases the computational cost and may be inconvenient. To pre- 

ent sampled points from deviating original shapes, [5] projects 

enerated points to their nearest neighbors in original models. 

he task performances would decrease after projection because the 

rojection is not considered during training. SamNet [4] gets over 

his problem by differentiable projection of the generated points 

o the original point sets. But it still needs multiple repeated train- 

ng processes or a large progress-net structure for sampling under 

ifferent resolutions. 

In this work, we propose a simple but effective solution for 

he sampling under relatively high resolutions where the effi- 

iency should be considered, named the Fast Point cloud sam- 

ling Network (FPN). The differences between our work and for- 

er learning-based works are presented in Fig. 1 . 

We sample points by driving initial randomly sampled points 

rom non-learning based sampling strategies to better positions in- 

tead of generating points directly, which is more concise and ef- 

cient. The discrepancy between progress-net and our method is 

resented in Fig. 1 -(b) and (c). The progress-net implements for 

-Net [5] and SamNet [4] achieve multi-resolution sampling by 

enerating points with highest resolutions and choose the first M

nes as M sampled points, while our method can naturally support 

ampling under different resolutions by changing the resolution of 

nitial points. We can see that progress-net always generates use- 

ess sampled points, while our method can avoid the redundancy 
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Fig. 1. (a) shows the differences between learning-based sampling strategies, while 

(b) and (c) present the discrepancy between progress-net and our method in multi- 

resolution sampling. P i , P o , and P s are input, output sampled points and intermediate 

coordinates, respectively. We assume that we sample M points from N input points. 

Blue points and yellow points denote generated and original points, respectively. 

S-Net generates sampled points directly, while SamNet projects generated points 

to original models by differentiable projection during training. Our work adopts a 

different operation to drive existing points instead of generation. 
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nd further improve the sampling efficiency. Besides, we introduce 

 Hybrid Training Strategy (HTS) to help FPN adapt to multiple 

ampling resolutions by randomly introducing different resolution 

ampled points during training. Sampled points are guaranteed to 

eet the shape of original point clouds by constraining the driv- 

ng distances without direct projection to avoid the performances 

eduction. Progress-net optimizes losses of multiple resolutions in 

 iteration to constrain all N sampled points, which has large com- 

utational cost. By applying HTS in FPN, we can train the network 

esolution-by-resolution with relatively low computation cost. Our 

ontributions can be summarized as: 

• We propose a novel learning-based point cloud sampling 

framework named fast sampling network (FPN) by driving ex- 

isting randomly sampled points to better positions; 
• We introduce a hybrid training strategy to help FPN adapt to 

different sam pling resolutions by randomly introducing select- 

ing the resolution of initial points during training; 
• The results on point cloud reconstruction and recognition con- 

firm that FPN outperforms the existing point clouds sampling 

strategies with high sampling efficiency. 

. Related Works 

.1. Point Cloud Learning 

Early works [6–8] usually apply 3D CNNs based on voxel rep- 

esentation of 3D point clouds. However, 3D volumes can not be 

irectly acquired. Converting point clouds to 3D voxels is expen- 

ive, which also leads to quantization errors caused by losing some 

etails of the original data. So Qi et al first introduced a point- 

ased point cloud learning network named PointNet [9] . It pro- 
217 
esses point clouds with multilayer perceptrons (MLPs) and ag- 

regates features with symmetric functions. PointNet++ [1] cap- 

ures local features by recurrently applying PointNet in local re- 

ions acquired by ball query around sampled points. Lots of works 

ave been proposed based on PointNet and PointNet++ such as 

he point cloud analysis [10–13] , reconstruction [14–16] or up- 

ampling [17,18] . DGCNN [19] builds dynamic graphs by selecting 

eighbors with distances between point features, which gets over 

he distance limitation of PointNet++. Except methods extracting 

eatures directly based on MLPs, some methods such as Point- 

onv [20] and KPconv [21] use MLPs to assign weights for points 

nd design corresponding convolution methods. 

.2. Sampling Strategies 

Random sampling and farthest point sampling (FPS) [1] are two 

idely used point cloud sampling strategies. FPS keeps a sam- 

led point set and cyclically adds the point farthest from the sam- 

led set in the remained parts to the sampled set, while ran- 

om sampling directly down-samples the points by random selec- 

ion. Since the development of deep learning, some learning-based 

orks [4,5] have also been released to enhance the performance 

f sampled points for specified tasks such as recognition, recon- 

truction and registration. They are optimized with pre-trained 

ask networks with task-oriented losses. However, the learning- 

ased methods are still quite limited by the network designa- 

ion. [5] adopts fully-connected networks to help generate sampled 

oints, while [4] differentiable projects the generated points to the 

riginal point clouds to get more practical points distribution. Both 

f them need to train a separate network for a resolution. Though 

5] presents progress-net to get sampling networks for all resolu- 

ions in a single training process, it actually trains a big genera- 

ion network contains all possible resolutions, which generates ex- 

ra unused points and may be quite inconvenient. 

. Methodology 

.1. Basic pipeline 

The basic pipeline of FPN is presented in Fig. 2 . We aggregate 

lobal features from the input points with a set of multilevel per- 

eptions (MLPs) and Max Pooling following PointNet [9] . The global 

eatures would contain information of original models. Then we 

ample some initial points with random sampling, which would be 

oncatenated with global features and combined into merged fea- 

ures including information from both initial sampled points and 

riginal models. Finally, the initial sampled points will be concate- 

ated again with merged features and fed into MLPs to predict an 

ffset for each initial point. By moving initial points with predicted 

ffsets, FPN can get sampled points with any resolution with a 

imple and efficient network structure. 

If we define the input as X , output as Y , random sampling op- 

ration as s (·) , concatenation operation as C(·) , and the PointNet 

tructure as f (·) , we can present FPN as 

s 0 = s (X, r) , 

Y = s 0 + MLP s (C( f (C( f (X ) , s 0 )) , s 0 )) , 
(1) 

here s 0 is the initial randomly sampled points with the resolution 

f r. We can see that the final sampling resolution is only decided 

y the resolution of initial random sampling, which means that a 

niversal sampling network can be learned for all resolutions. By 

imply selecting different numbers of initial points, the sampling 

esolution of FPN can be easily adjusted without changing the net- 

ork organization. 
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Table 1 

The number of neurons in networks. f 1 , f 2 , f 3 are modules in Fig. 2 . 

f 1 f 2 f 3 

MLPs (128,256,256) (128,256,256) (128,128,3) 

Table 2 

The comparison on optimal clustering. 

Center Iterations 1 10 100 

16 FPS 2.43 2.00 1.98 

Ours 2.16 1.98 1.96 

32 FPS 1.20 1.02 1.00 

Ours 1.11 1.00 1.00 
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.2. Hybrid Training Strategy 

The FPN structure supports sampling different resolution points 

y predicting offsets for different number of initial points. We in- 

roduce hybrid training strategy (HTS) to help FPN adapt to differ- 

nt resolutions, while most existing learning-based works [4,5] re- 

uire multiple repeated training processes or redundant networks 

o sample point clouds to different resolutions as we mentioned 

n Section 1 . The achievement of HTS is presented as Algorithm 1 .

he resolution of initial points is randomly selected between res- 

lutions from N 1 to N 2 during each training iteration, which is 

dopted to improve the robustness of FPN on multiple resolutions. 

.3. Loss function 

The loss fuction of FPN consists of two parts: the task-oriented 

oss and range constraint. The task-oriented loss is adopted to 

uide the sampling process, while range constraint is introduced 

o prevent the sampled points from going too far from the ini- 

ial points. The sampled results may deviate the original contour 

f sampled points are allowed to go too far. The range constraint 

an be presented as 

 rc = 

1 

N 

∑ ‖ S o − S i ‖ 2 , (2) 

here N is the sampling resolution. S i and S o denote initial sam- 

led points and final sampled points, respectively. The final train- 

ng loss would be 

 loss = L task + λL rc , (3) 

hile L task denotes the task-oriented loss. For reconstruction- 

elated tasks, it may be Chamfer Distance or Earth Mover Dis- 

ance [22] defined as 

 task = L CD (S 1 , S 2 ) 

= 

1 

2 

( 

1 

| S 1 | 
∑ 

x ∈ S 1 
min 

y ∈ S 2 
‖ x − y ‖ 2 + 

1 

| S 2 | 
∑ 

x ∈ S 2 
min 

y ∈ S 1 
‖ x − y ‖ 2 

) 

, (4) 

r 

 task = L EMD (S 1 , S 2 ) = min 

φ: S 1 → S 2 

1 

| S 1 | 
∑ 

x ∈ S 1 
‖ x − φ(x ) ‖ 2 , (5)

here S 1 and S 2 are input and output. φ is a bijection from S 1 to

 2 . For classification-related tasks, the task-oriented loss may be 

ross entropy defined as 

 task = L CE (p, q ) = −
∑ 

p(x ) log(q (x )) , (6)

here x is the data, p, q are the label and predicted distributions. 

. Experiments 

.1. Dataset and implementation details 

In this work, we train FPN on ShapeNet part dataset [23] . 

hapeNet part dataset consists of 12288/1870/2874 models in the 

rain/val/test splits from 16 categories following [24,25] . Model- 

et10 and ModelNet40 are subsets of ModelNet [26] , which con- 

ain 10 and 40 categories models, respectively. ShapeNet, Model- 

et10 and ModelNet40 are all datasets composed of manually re- 

onstructed CAD models. All point clouds consist of 2048 points 

niformly sampled on mesh models. 

We conduct comparisons on point cloud recognition and re- 

onstruction tasks for object models to evaluate the performance 

f FPN. Randomly sampling, farthest point sampling (FPS), S- 

et [5] and SamNet [4] are adopted to compare. To provide a 

air comparison, S-Net [5] and SamNet [4] are trained with the 
218 
rogress-net method. To train FPN, we consider the sampling with 

elatively high resolutions between 64 ∼ 1024 following settings 

f [1,3,15,17] . The network is trained with Adam optimizer under a 

earning rate 0.0 0 01. 

All experiments and evaluations are conducted on a NVIDIA 

080ti GPU with a 2.9GHZ i5-9400 CPU based on Tensorflow. The 

yper-parameter λ is tuned on the validation split of ShapeNet. 

etailed network structures are shown in Table 1 . 

.2. Comparisons on reconstruction 

In this section, we evaluate the sampling performance based 

n the reconstruction network [25] pre-trained on ShapeNet and 

easure reconstruction errors on ModelNet10 and ModelNet40. 

he qualitative and quantitative results are presented in Fig. 3 and 

ig. 4 . Fig. 4 -(a) and (b) compare performances of reconstruction 

etworks trained and evaluated based on CD, while Fig. 4 -(c) and 

d) present results trained and evaluated based on EMD. We can 

ee that our method achieves the lowest reconstruction errors un- 

er different resolutions. To provide a more intuitive comparisons, 

e also choose a few models from the test data to present a quali- 

ative comparison in Fig. 3 by illustrating the reconstruction results 

f different sam pling strategies under 128 sam pled points. We can 

ee that existing sampling methods may create unexpected defects 

n reconstructed results at some continuous regions such as sofa 

egs and chair backs as circled, while our method can get over the 

aws by driving more points to the edges of these circled regions. 

.3. Comparisons on real scans 

As shapeNet, ModelNet10 and ModelNet40 are all synthetic 

ata, we also conduct experiments on objects in real scans from 

cannNet in [27] to further explore the effectiveness of FPN. The 

esults are presented in Fig. 6 . We can see that FPN shows clearer

mprovements over existing learning-based methods S-Net and 

amNet, which confirms its great robustness. 

.4. Comparisons on recognition 

For point cloud recognition [9] , we evaluate classification accu- 

acy on commonly-used ModelNet10 and ModelNet40 under dif- 

erent sampling resolutions. PointNet [9] networks pre-trained on 

orresponding datasets are adopted as the task networks. The re- 

ults are presented in Fig. 5 . We can see that our method achieves

he highest accuracy on almost all resolutions, which proves the 

ffectiveness of FPN. 

.5. Discussion about clustering 

Except down-stream tasks such as reconstruction or recogni- 

ion, down-sampled points can also be adopted as the initial clus- 

ering centers. The farthest point sampling (FPS) is an approxi- 

ation of centers in k-center clustering problem [28] , while K- 

eans++ is actually a probabilistic implementation of FPS by giving 
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Fig. 2. The whole pipeline of FPN. The + denotes element-wised addition. f 1 and f 2 aggregate features by MultiLayer Perceptrons(MLPs) and pooling, while f 3 is a group of 

MLPs to predict offsets from coordinates and features. The task network is corresponding to the specific task, such as point cloud recognition and reconstruction. L task is the 

loss constrained the task network. 

Fig. 3. Qualitative comparisons of different sampling strategies. The main differences are circled for clearer demonstration. 
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t

igher probabilities for farther points. In this section, we compare 

erformances of optimal clustering between initial centers sam- 

led with FPS and FPN initialized with FPS. The clustering perfor- 

ances are measured by average distances between all points and 

heir clustering centers, while FPN is trained by optimizing the dis- 

ances between all points and sampled points. The results are pre- 

ented in Table 2 . We can see that our network can still enhance

PS for a better initialization of clustering, which shows more obvi- 
219 
us improvements when the iterations of K-means are smaller. As 

he iteration increases, the performances gradually become close 

ecause the influence of initialization becomes weaker. 

.6. Comparisons on sampling efficiency 

The sampling efficiency is important for real-world applica- 

ions. In this section, we compare the time efficiency of different 
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Fig. 4. Reconstruction comparisons between sampling strategies. (a) and (b) denote errors evaluated on ModelNet10 and ModelNet40 for CD-based reconstruction networks, 

while (c) and (d) show performances of EMD-based reconstruction networks on ModelNet10 and ModelNet40. 
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ampling strategies under different resolutions between 64 ∼1024. 

hough random sampling is a little faster than our method, it of- 

en gets the worst results as shown in Fig. 4 and Fig. 5 . FPN out-

erforms commonly used sampling strategies such as FPS and S- 

et on task performances, while it is only slower than the random 

ampling. From Fig. 8 we can see that FPN is much faster than S-

et [5] and FPS, which shows its high sampling efficiency. 

.7. How does FPN works? 

FPN actually works by driving the initial points sampled by ran- 

om sampling. It would be interesting to observe what does FPN 

o to the initial points. In this section, we present a visualization 

n Fig. 7 . We visualize initial and final sampled points as well as 

heir reconstruction results based on a pre-trained reconstruction 

etwork [25] . We can see that the initial random sampling may 

iss some shapes such as the table leg or the airplane tail due to 

he randomness, while FPN can help random sampling more robust 

o cover the whole shape. Then the reconstruction performance of 

PN is improved on the missed part. 
220 
In short, FPN learns a pattern to change the distribution of ini- 

ial points according to the specific task, which can get over weak- 

esses and uncertainty of randomly sampled initial points. 

.8. Ablation Study 

Comparison between different sampling organizations. FPN 

ets sampled points by driving existing sampled points to better 

ositions, while former learning-based S-Net and SamNet gener- 

te points with fully-connected networks. To compare the driving 

etwork and fully-connected network, we conduct a group of ex- 

eriments between the driving and fully-connected networks. The 

esults are presented in Fig. 9 . We can see that the driving network 

utperforms the fully-connected network especially on higher res- 

lutions. It may be difficult for fully-connected networks to gen- 

rate relatively dense points, while our driving network is always 

obust for all resolutions. 

The influence of range constraint. We conduct an ablation 

tudy for λ. Note that this is only conducted to observe the in- 

uence of range constraint weight λ on sampling performances in- 

tead of the tuning of λ, which is chosen according to the val set 
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Fig. 5. Recognition comparisons between sampling strategies. (a) and (b) denote errors evaluated on ModelNet10 and ModelNet40, respectively. 

Fig. 6. Comparisons of reconstruction networks trained on real scans. 

Fig. 7. Visualization of how our network takes effect. Initial randomly sampled points and our driven results are fed into same pre-trained reconstruction network to observe 

the performances. Initial and Ours(sam) denote initial and driven sampled points, while offset shows their ways to move. Out(ini) and Out(sam) show the reconstruction 

results with initial and our sampled points, respectively. 

221 
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Fig. 8. Sampling efficiency comparisons. 
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Fig. 10. The influence of range constraint. 
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ntroduced in Section 4.1 . All experiments are conducted by repeat- 

dly training FPN based on parameter-fixed AE [25] following S- 

et and SamNet under different settings. The results are presented 

n Fig. 10 . We can see that too big or small λ both have nega-

lgorithm 1 Training with Hybrid Training Strategy 

Input: data X , the number of iterations iter, the number of res- 

olutions m ; 

prob 1 , prob 2 , · · · , prob m 

= 

1 
m 

, 1 
m 

, · · · , 1 
m 

; 

for i = 1 to iter do 

Select the resolution r according to prob 1 , · · · , prob m 

; 

Train FPN by descending gradient: ∇ θF PN 
L loss (Y X,r ) 

end for 

ive influence. Bigger weights limit the driving of initial sampled 

oints too much to get over all weaknesses, while smaller weights 

ay cause sampled points to go too far from original shapes and 

educe the performances instead. 

. Discussion about the limitation 

As shown in Fig. 5 -(b), our method shows relatively inferior 

erformances at resolutions below 64. FPN may fail to cover the 
Fig. 9. Comparison of different sampling network organization. (a) and (b) de

222 
hole shapes at low resolutions when the initial randomly sam- 

led points miss some thin structures. However, FPN is still mean- 

ngful as it can significantly improve the sampling efficiency and 

ask-oriented performances at relatively high resolutions as shown 

n Sections 4.2 and 4.4 . We will try more to overcome the limita-

ion in the future work. 

. Conclusion 

In this work, we propose a fast point clouds sampling network 

FPN). We use the widely used random sampling to generate initial 

oints and drive them to more appropriate positions with the net- 

ork. The sampling resolution of FPN is flexible, which supports 

ampling different resolution points with a same network. We in- 

roduce hybrid training strategy to enhance the adaptability to dif- 

erent resolutions by randomly selecting different resolutions dur- 

ng training. The experiments on point cloud reconstruction and 

ecognition have demonstrated that FPN can achieve better perfor- 

ances than most existing sampling strategies, when it is much 

ore efficient than many well-performed methods such as FPS, S- 

et [5] and SamNet [4] . 
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