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Abstract. Down-sampling algorithms are adopted to simplify the point clouds
and save the computation cost on subsequent tasks. Existing learning-based sam-
pling methods often need to train a big sampling network to support sampling
under different resolutions, which must generate sampled points with the costly
maximum resolution even if only low-resolution points need to be sampled. In
this work, we propose a novel resolution-free point clouds sampling network to
directly sample the original point cloud to different resolutions, which is con-
ducted by optimizing non-learning-based initial sampled points to better posi-
tions. Besides, we first introduce data distillation to assist the training process
by considering the differences between task network outputs from original point
clouds and sampled points. Experiments on point cloud reconstruction and recog-
nition tasks demonstrate that our method can achieve SOTA performances with
lower time and memory cost than existing learning-based sampling strategies.
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1 Introduction

With the rapid development of 3D related tasks such as SLAM [3] and recognition [23,
24, 28], point cloud has attracted more and more attentions in computer vision and
robots. However, large point clouds limit the efficiency of related algorithms and bring
up higher device requirements. Sampling original point clouds to lower resolutions
might be an alternative solution to reduce the computational cost on subsequent tasks.
Existing works [24, 13, 22, 33, 18, 14] use random sampling or Farthest Point Sampling
(FPS) to down sample the point clouds. However, non-learning-based sampling strate-
gies are lack of relevance to down-stream tasks, which blocks their further improve-
ments on task-oriented performances.

In this condition, some researchers [16, 8] propose learning-based sampling meth-
ods to improve the task-oriented performances through optimization. S-Net [8] gener-
ates initial sampled points directly by fully-connected networks and project them back
to their nearest neighbors in original point clouds. Sampled points of [8] has relatively
weak relevance with the original points because the projection process from generated
sampled points to original point clouds is independent from training, while SamNet [16]
gets over this problem by designing a differentiable approximation for projection during
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Fig. 1. (a) and (b) show differences between progressive implements of existing sampling net-
works and our resolution-free network, while (c), (d) and (e) show the architecture of former
sampling networks, Ours and knowledge distillation. N and M denote the number of original
and sampled points, respectively.

training. To support different resolutions with a single network, [8, 16] propose progres-
sive implements by generating candidate points with the same number of input point
clouds and directly select sampled points from all candidates in order, as illustrated in
Fig. 1-(a). Points of multiple sampling resolutions are fed into the task network together
to provide constraints for different resolutions. The progress implement always needs to
generate sampled points of maximum resolutions even if only low-resolution points are
sampled, which introduces extra computational cost. Besides, both S-Net [8] and Sam-
Net [16] only use pre-trained task networks to transfer gradients from task-oriented
losses in a straightforward process as shown in Fig. 1-(c), which ignore learned distri-
butions of the task network on original point clouds. In other words, they do not make
use of the learned knowledge included in pre-trained networks.

In this work, we propose a simple but effective resolution-free Point Cloud sam-
pling network with data Distillation (PCDNet). As presented in Fig. 1-(b), by driving
existing initial sampled points from non-learning-based sampling strategies to better
positions instead of generating points directly, PCDNet can get over the limitation of
fully-connected networks and acquire sampled points of any resolution directly, which
avoids the extra computational cost and improves sampling efficiency.

During the training process of PCDNet, we propose a dynamic resolution selection
strategy to choose the optimized resolution in each iteration by considering the conver-
gence on each sampling resolution. Resolutions whose task-oriented losses vary larger
will acquire higher selection probabilities to help them converge steadily. Besides, we
propose data distillation to assist the optimization by considering differences between
task network outputs from original and sampled points, which actually takes advantage
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of the knowledge in pre-trained task networks as knowledge distillation methods [12,
25]. As indicated in Fig. 1-(d) and (e), knowledge distillation constrains different net-
works based on same data, while data distillation constrains different data with same
task networks. With the help of data distillation, our sampling network can converge to
better results than straightforward training.

Our contributions can be summarized as follows:

– We propose a novel resolution-free point cloud sampling network to sample orig-
inal point clouds to any resolution directly, where a dynamic resolution selection
strategy is proposed to assist the optimization;

– We introduce data distillation by considering differences between the task network
outputs from original point clouds and sampled points to supervise the training of
sampling network;

– Experiments on reconstruction and recognition tasks demonstrate that PCDNet can
outperform former point cloud sampling methods on task-oriented performances
with lower time and memory cost than existing learning-based sampling networks.

2 Related Works

2.1 Point Cloud Sampling

Random sampling and farthest point sampling (FPS) [24, 22, 32, 13] are two widely
used point cloud sampling strategies. FPS keeps a sampled point set and cyclically
adds the point farthest from the sampled set in the remained parts to the sampled
set, while random sampling directly down-samples the points by random selection.
Since the development of deep learning based methods on point clouds [17, 20, 26, 28],
some learning-based works [16, 8] have also been released to enhance the performances
of sampled points for specified tasks such as recognition [23, 24, 29, 19, 27] and re-
construction [1, 9, 31], which can greatly outperform non-learning sampling strategies.
However, the learning-based works are still quite limited by the network designations
based on fully-connected networks. Both of [8] and [16] require the progressive im-
plement to get a single sampling network for all resolutions in one training process, it
actually trains a big sampling network contains all possible resolutions, which always
generates sampled points of maximum resolutions even if only low-resolution points
are sampled and introduces extra computational cost.

2.2 Knowledge Distillation

Knowledge Distillation includes a series of methods aiming to train a small student net-
work with the help of a big teacher network. Hinton.et al [12] first propose the vanilla
knowledge distillation by introducing extra constraints between the outputs of teacher
network and student network, which acquires surprising performances on MNIST clas-
sification and Automatic Speech recognition. Later works [25, 11, 2, 34, 15] further take
advantage of the relations between intermediate features to train deeper and thinner
student networks. [5] propose an available distillation framework for object detection,
which is a common regression problem. [21, 6, 10] propose data-free methods to reduce
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Fig. 2. The whole pipeline of PCDNet. Initial seeds Q0 are sampled from input set P with a non-
learning-based sampling strategy, which is farthest point sampling in this work. Global features
Fg is extracted from P and merged with Q0 to construct merged features Fm, which is further
used to predict a displacement field Qm including an offset for each point in Q0 and drive them
to better positions Qg . Qg is projected back to P to get final sampled points Q.

the reliance on original training data and improve distillation performances by intro-
ducing generated synthetic data. In this work, we propose data distillation to assist the
point cloud sampling process based on knowledge distillation methods.

3 Methodology

3.1 Resolution-free sampling network

Network structure. The whole pipeline of our work is presented in Fig. 2. Input points
are sampled with non-learning-based sampling strategies such as FPS [24] to produce
initial sampled points, named seeds. Then we aggregate global features from the input
points with a set of parameter-shared multilevel perceptions (MLPs) and pooling fol-
lowing [23]. The global features would contain information of original models, which
would be concatenated with initial seeds and combined into merged features includ-
ing information from both initial seeds and original models with MLPs and pooling.
The initial seeds will be concatenated again with merged features and fed into MLPs to
predict a displacement field including an offset for each initial seed. By moving initial
seeds with predicted displacement field, we can acquire generated sampled points of
any resolution easily. Finally, we follow [16] to project the generated sampled points
back to original point clouds and get final sampled points.

Resolution-aware pooling. Specially, to design a network which can easily adapt
to different sampling resolutions, we propose resolution-aware pooling to aggregate
point features. Common pooling operations such as max pooling or average pooling are
not sensitive to the point cloud resolution. In other words, point clouds with different
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resolutions may have same features when they have identical shapes, which is not dis-
tinguishable to sample multiple resolution point clouds. In this condition, we propose
resolution-aware pooling to aggregate resolution-related features. Let N be the number
of points in the original point cloud, M be current sampling resolution, Fi be i-th point
feature need to be aggregated. The resolution-aware pooling is defined as

Fo =

∑M
1 Fi

N
, (1)

where Fo is the aggregated feature. We can see that aggregated features will have rela-
tively smaller values when the resolution is low, larger otherwise. The resolution infor-
mation is then simply introduced to the network, which can improve its adaptability to
different sampling resolutions.

3.2 Dynamic resolution selection strategy

During the training process of PCDNet, a certain resolution is chosen in each iteration.
To help resolution-free sampling network adapt to different sampling resolutions, we
propose a dynamic resolution selection strategy to help decide the training resolution in
each iteration. The algorithm is presented in Alg. 1. In details, given the resolution up-
dating interval n, we evaluate and record errors of the sampling network under different
resolutions every n/2 iterations, while adjusting selection probabilities each n itera-
tions according to the two recorded errors. Resolutions whose errors vary larger will
get higher selection probabilities to help them converge steadily. With the Dynamic
resolution selection strategy, PCDNet can get good and balanced convergence under
multiple resolutions.

3.3 Data Distillation

Existing learning-based sampling networks feed the sampling results to pre-trained task
networks and get optimized in a straightforward process. They do not make full use of
the knowledge included in the pre-trained task networks. In this condition, as shown in
Fig. 2, we introduce knowledge distillation constraints between task network outputs
from original data and sampled results to ”distillate” point clouds, which we named
data distillation. Data distillation guides to simplify the data based on networks, while
knowledge distillation teaches to simplify the network based on the data.

For point cloud reconstruction, a commonly used task-oriented constraint Chamfer
Distance(CD) [9] is adopted, which is defined as

LCD(S1, S2) =
1

2
(

1

|S1|
∑
x∈S1

min
y∈S2

‖x− y‖2 +
1

|S2|
∑
x∈S2

min
y∈S1

‖x− y‖2), (2)

where S1 and S2 are two point sets. CD is actually the average distance from points
in one set to their nearest neighbors in another set. Let P and Q be the original point
clouds and sampled results, following [7], we can define the data distillation constraint
for point cloud reconstruction as

LDD(P,Q, TP , TQ)=

{
LCD(P, TQ), if LCD(P, TQ)+m>LCD(P, TP )

0, otherwise,
(3)
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Algorithm 1 Training with Dynamic resolution selection
Input: data X , the number of iterations iter,
Updating interval n, the number of resolutions m,
Initialize Error lists:
errlist1, errlist2, · · · , errlistm = [ ], [ ], · · · , [ ];
Initialize Probabilities:
prob1, prob2, · · · , probm = 1

m
, 1
m
, · · · , 1

m
;

for i = 1 to iter do
Train the sampling network with resolution selected according to prob1, · · · , probm;
if i%(n

2
)==0 then

for j = 1 to m do
errlistj .insert(Ltask(Xi))

end for
end if
if i%(n+ 1)==0 then

for j = 1 to m do
error nerrj =

max(errlistj)−min(errlistj)

max(errlistj)

end for
for j = 1 to m do

probj = exp
nerrj∑m

1 exp
nerrj

errlistj → [ ]
end for

end if
end for

where TP and TQ are reconstructed point clouds by task networks from P and Q, re-
spectively. m is a margin to adjust the distillation degree. In details, the data distillation
for reconstruction means to pay more attention to sampled results with relatively poor
reconstruction performances against original point clouds. ifm is bigger, more sampled
results will be constrained. we set m = 0.001.

For point cloud classification, the task-oriented loss is cross-entropy defined as

LCE(zS , qS) = −
∑

qS · log(softmax(zS)), (4)

where qS and zS are the label and predicted result of point cloud S, respectively. Let P
and Q be the original point clouds and sampled point clouds, following [12], the data
distillation constraint for classification can be defined as

LDD(TP , TQ) =−
∑

softmax(
TQ

T
)log(softmax(

TP

T
)), (5)

where TP , TQ is the predicted outputs of target networks from original point clouds
P and sampled results Q, respectively. The data distillation constraint for point cloud
classification works by narrowing the distance between predicted distributions from
point clouds before and after sampling. T is the temperature parameter to adjust the
distribution of distillation constraint. we set T = 1.0 in this work.
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3.4 Simplification and Projection

Simplification and projection. In this work, we follow [16] to project generated sam-
pled points to original point clouds. The projection constraint is defined as

Lproj = t2, (6)

where t is a trainable parameter in the projection process. The simplification con-
straint [8, 16] is used to encourage the sampled points to be near from the original
point clouds. Distances from points sets S1 to S2 can be defined as

La(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y
‖x− y‖22, (7)

Lm(X,Y ) = max
x∈X

min
y∈Y
‖x− y‖22. (8)

Let Q, P be the sampled points and original point clouds, respectively. The simplifica-
tion constraint can be defined as

Lsim(Q,P ) = La(Q,P ) + βLm(Q,P ) + (γ + δ|Q|La(P,Q)) (9)

Here, we follow the same setting for β, γ and δ as [16].
Move Constraint. Our network acquires sampled points by driving initial seeds to

new positions. The Move constraint can be presented as

Lmc =
1

N

∑
‖Qm‖2, (10)

where N and Qm denote the sampling resolution and predicted displacement field as
claimed in Sec. 3.1.

3.5 Loss function

Given all just defined components, the final training loss can be defined as

Lfinal = Ltask + λ1 ∗ LDD + λ2 ∗ Lsim + λ3 ∗ Lproj + λ4 ∗ Lmc. (11)

In this work, we set λ1 ∼ λ4 as 0.5, 1.0, 10−5 and 10−3.

4 Experiments

4.1 Dataset and Implmentation Details

In this work, we evaluate the sampling performances based on point cloud reconstruc-
tion and recognition. Three datasets: ShapeNet [4], ModelNet10 (MN10) and Model-
Net40 (MN40) [30] are adopted for the training and evaluation processes. ShapeNet
contains 12288 models in the train split and 2874 models in the test split from 16 cat-
egories following [31]. MN10 and MN40 are subsets of ModelNet, which contain 10
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Fig. 3. Qualitative Comparisons between different sampling strategies under 32 sampled points.
Sampled points are marked in blue. We can see that our method performs better on the circled
thin and small regions by driving more sampled points to these areas.

categories and 40 categories of CAD models, respectively. All point clouds are com-
posed of 2048 uniformly sampled points from mesh models.

For point clouds reconstruction, two commonly used baseline models AE [1] and
FoldingNet [31] are introduced as the task networks. Task networks and sampling net-
works are both trained on the train split of ShapeNet. As for point cloud recognition,
we train and evaluate the network performances on MN10 and MN40 [30] based on the
task network PointNet [23] following [8, 16]. To make a fair comparison, S-Net [8] and
SamNet [16] are trained with the progressive implements [8] to train a single model for
all resolutions.

4.2 Experiments on Reconstruction Baselines

In this section, we evaluate the sampling performances on commonly-used reconstruc-
tion networks AE [1] and FoldingNet [31] pre-trained on train split of ShapeNet, while
measuring reconstruction errors on the test split of ShapeNet, MN10 and MN40. The
quantitative results are presented in Fig. 4. We evaluate sampling performances by in-
crements of reconstruction errors compared to original point clouds, while the recon-
struction errors are measured with Chamfer Distance (CD) [9] and Hausdorff Distance
(HD) defined as

HD(S1, S2) =
1

2
(max
x∈S1

min
y∈S2

‖x− y‖2 +max
x∈S2

min
y∈S1

‖x− y‖2), (12)

where S1 and S2 are two point clouds to be compared. CD and HD focus on the av-
erage and worst performances, respectively. We can see that our method can achieve
lower reconstruction errors than existing sampling strategies on most adopted networks
and datasets under different resolutions, which confirms that it is quite effective. To in-
tuitively compare the performances of different sampling strategies, we also present a
qualitative comparison in Fig. 3.
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Fig. 4. Comparisons between sampling strategies. (a), (b) and (c) denote results on ShapeNet,
MN10 and MN40 based on AE [1], while (d), (e) and (f) are results on ShapeNet, MN10 and
MN40 based on FoldingNet [31]. All metrics are multiplied with 103.

Reconstruction results from original point clouds and sampled points are presented
in top 2 lines, while original point clouds and sampled results are presented in 2 lines
below. Sampled points are marked in blue. We can see that existing methods pay lit-
tle attention to some thin and small structures in original models as circled in Fig. 3,
while our method can drive more sampled points to the error-prone regions and improve
reconstruction performances.

4.3 Experiments on Recognition Baselines

For point clouds recognition, we train the learning-based sampling algorithms on MN10
and MN40 based on PointNet [23] following [8, 16]. The performances under differ-
ent sampling resolutions are compared in Fig. 6. We can see that our method can
achieve higher classification accuracy than other sampling algorithms on both MN10



10 Huang et al.

Fig. 5. Visualization of the way PCDNet works. Initial seeds from non-learning-based sampling
strategies and final sampled points from our PCDNet are marked in blue. We feed them to a same
AE [1] to observe their reconstructed outputs.

and MN40. An interesting condition is that our method can even exceed the classifi-
cation accuracy of original point clouds on MN40, while all learning-based sampling
networks get higher accuracy than original point clouds on MN10 under the resolution
of 512 points.

The recognition network actually works by extracting specific structural features
from original point clouds. Some points may be redundant for features, which actually
introduce noises for the recognition network. Sampling can be regarded as a filtering
process to remove noises from original points clouds. There is an trade-off between
the sampling resolution and noises. Sampled points are less affected by noises under
a lower resolution, while the structural features are also limited by less points. As the
resolution increases, impacts from original noises and structural features contained in
sampled points are both increased.

In this condition, sampled points under a certain resolution may overstep original
point clouds on specific task network with an end-to-end optimization. Higher resolu-
tion will instead reduce the performances, as shown in Fig. 6-(a). Note that our method
in Fig. 6-(b) has 86.32% accuracy at 512 points and 86.28% accuracy at 1024 points,
which is also consistent with our analysis.

4.4 How does PCDNet work?

PCDNet actually works by driving original sampled points to more appropriate po-
sitions. We visualize the points before and after the movements to see how PCDNet
works. The results are presented in Fig. 5. We can see that initial seeds from FPS may
create defective regions as shown by the circled areas. PCDNet can learn to drive more
sampled points to the failed areas, which can introduce more structural details from
these areas.

4.5 Analysis of the Data Distillation

To observe the behaviors of data distillation, we present its improvements on recon-
struction and recognition tasks under different resolutions. The results are presented
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Fig. 6. Comparisons on recognition. (a) and (b) denote results on MN10 and MN40, respectively.

in Fig. 7. We can see that the data distillation brings more improvements on low res-
olutions. The reason is that the data distillation is based on differences between task-
oriented performances of sampled points and original point clouds. It can provide stronger
supervision when the performances of sampled points are quite different with original
point clouds. We can see that data distillation can help our sampling network achieve
20% higher classification accuracy on MN10 and 10% improvements on MN40 under
32 sampled points, which confirms that it is quite effective.
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Fig. 7. Improvements from data distillation under different resolutions, i.e. the 0.0 denotes results
of PCDNet trained without data distillation. left and right vertical axises denote metrics measured
on datasets marked in blue and red, respectively.

4.6 Sensitivity to the Non-learning Sampling

In this work, we use FPS to generate initial sampled points. To explore the sensitivity of
our method to the non-learning sampling strategy, we conduct a group of comparisons
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on AE [1] based on a few commonly-used sampling strategies including random sam-
pling, FPS, Voxel Downsampling, and Sphere filtering. The SOTA method SamNet [16]
is also introduced to make a comparison. The results are presented in Fig. 8.

Fig. 8. Comparisons between different initial sampling strategies. (a) and (b) denote comparisons
on ShapeNet and ModelNet40, respectively.

We can see that the performances based on FPS, Voxel Downsampling, and Sphere
filtering are quite close, which confirms that our framework is robust when the initial
sampled points have relatively uniform spatial distribution. The performances based on
random sampling has obvious decline compared to other strategies due to its random-
ness. Intuitively speaking, the randomly sampled results may be quite imbalanced to
cover the whole shapes, which makes it hard to drive them to well-performed posi-
tions. But even results based on random sampling has slightly better performances on
ModelNet40 than SamNet, which confirms our framework is effective.

4.7 Comparisons of Sampling Efficiency

In this section, we compare the inference time and memory cost between different
learning-based sampling strategies on AE [1]. The inference time and memory cost
are measured by the average time and memory cost under different resolutions between
32 ∼ 1024. The results are presented in Table 1. We can see that our method has lower

Methods S-Net SamNet Ours

Time(ms) 9 17 7
Memory(MB) 842 1156 797
Parameter(M) 1.77 1.77 0.28

Table 1. Model efficiency comparison. Time and memory are evaluated on a Nvidia 2080ti GPU
with a 2.9Ghz i5-9400 CPU.
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Fig. 9. Ablation study for the resolution updating interval. left and right vertical axises denote CD
and HD multiplied by 103.

time cost, less memory cost and smaller parameter than existing learning-based sam-
pling strategies S-Net [8] and SamNet [16].

4.8 Ablation Study

Influence of Components in PCDNet. To clarify the influence of each component
in PCDNet, we conduct ablation experiments in this section. Dyna, Reso, Move and
Dist are Dynamic resolution selection, Resolution-aware pooling, Move constraint and
Data distillation, respectively. Base denotes the sampling network without Resolution-
aware pooling, which is trained with task-oriented loss, simplification constraint and
projection operation following [16]. CD* denotes CD metric measured under 32 sam-
pled points, while CD and HD are average metrics under different resolutions between
32 ∼ 1024. We can see each module makes sense. Removing any module will reduce
the performances.

BASE RESO DIST DYNA MOVE CD HD CD*

X 3.70 3.31 12.45
X X 2.99 2.50 10.74
X X X 2.89 2.12 10.36
X X X X 2.74 2.01 10.05
X X X X X 2.67 1.97 9.91

Table 2. Ablation study for components. All metrics are average values under different resolu-
tions, which are multiplied with 10−3.

Influence of resolution updating interval. The number of dynamic resolution up-
dating interval nmentioned in Sec. 3.2 has influence on the final performance. A smaller
interval will lead the network to change resolutions frequently, which may introduce
more randomness. Though a big interval can reduce the randomness when evaluating
the training errors, the selection frequency may be not high enough to train all resolu-
tions well. In this section, we conduct a series of experiments to observe the influences
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of different resolution updating intervals. The results are presented in Fig. 9. We can
see that 20 is a good choice.

Influence of distillation hyper-parameters. Data distillation is an interesting com-
ponent proposed to improve the network performances by introducing extra supervision
from original network outputs. Hyper-parameters such asm for reconstruction networks
and T for recognition networks defined in Sec. 3.3 are used to adjust the influence of
original outputs. Smaller T , e.g., will increase the impacts of both existing knowledge
and misclassified noises for recognition networks. To figure out the influences of these
hyper-parameters, we present the ablation experiments performances in Fig. 10. We can
see that the reconstruction network achieves the lowest error when m = 0.001, while
the recognition network gets highest accuracy at T = 1.0.

5 Conclusion

In this work, we propose a new resolution-free point cloud sampling network to deal
with different resolutions with a same architecture. By driving initial seeds sampled
with non-learning-based sampling strategies such as FPS, we can directly sample orig-
inal point clouds to any resolution by adjusting the resolution of initial seeds. Be-
sides, we propose data distillation to assist the optimization by considering differences
between task network outputs from sampled points and original point clouds based
on knowledge distillation constraints. Experiments on reconstruction and recognition
demonstrate that our method achieves better task-oriented performances with lower
time and memory cost than existing learning-based sampling networks.
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